Nonstandard analysis and statistical decision theory

David Schrittesser Harbin Institute of Technology, University of Toronto

SETTOP 2022

All results are joint work with Dan M. Roy and Haosui (Kevin) Duanmu.

- 1. Want to measure an empirical quantity ξ
- 2. Make *n* (imprecise) measurements, obtaining x_1, \ldots, x_n .
- 3. Give an estimate of ξ , as a function of $\vec{x} = (x_1, \dots, x_n)$, e.g.:

$$\hat{\xi}(\vec{x}) = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{x}$$

or

$$\hat{\xi}(\vec{x}) = \frac{\min\{x_1, \dots, x_n\} + \max\{x_1, \dots, x_n\}}{2}$$

But which one of these, and why?

And why not completely other estimates?

Perhaps we want to estimate the precision of the measurement.

E.g., by $\hat{\sigma}(\vec{x}) = \frac{\sum_{i=1}^{n} (\bar{x} - x_i)^2}{n-1}$

or, for some a > 0, by

$$\hat{\sigma}_{a}(\vec{x}) = \frac{\sum_{i=1}^{n} (\bar{x} - x_i)^2}{a}$$

e.g., with a = n + 1.

But again: Which one of these? Why?

And why not completely other estimates?

To compare estimators, be inspired by...game theory!

Player I (Nature) chooses $\theta \in \Theta$

 $\triangleright \Theta$ Parameterspace (possible states of nature)

Player II (Statistician) chooses $\delta \colon \mathbb{X} \to \mathbb{A}$ from \mathcal{D}

- X Samplespace (possible measurement outcomes)
 A Actionspace (possible estimates, or accept/reject H₀)
- \mathcal{D} decision procedures available to Statistician

Outcome of the game: Player II suffers a loss of

 $r(\theta, \delta)$

Where do we get $r(\theta, \delta)$ from?

 Fix a family of measures (P_θ)_{θ∈Θ} on X. Assume that under the condition that Nature chooses θ, the probability of measuring x ∈ B is given as:

$$P(x \in B \mid \theta) = P_{\theta}(B)$$

2. Fix a loss function

$$(heta, \hat{ heta}) \mapsto \ell(heta, \hat{ heta}) \in \mathbb{R}_{>0}$$

3. For each $\delta \colon \mathbb{X} \to \mathbb{A}$, define its risk function as its expected loss

$$egin{aligned} &r^{\delta}(heta)\equiv r(heta,\delta):=\int_{\mathbb{X}}\ellig(heta,\delta(x)ig) P_{ heta}(\mathrm{d}x)\ &=\mathbb{E}_{ heta}\,\ell(heta,x) \end{aligned}$$

Figure: Some risk function in ${}^{\Theta}\mathbb{R}$

Example: Normal location

Let $\mathbb{X} = (\mathbb{R}^d)^n$, i.e., we take *n* samples x_1, \ldots, x_n from \mathbb{R}^d .

$$P(x \in B \mid \mu, \sigma) = P_{\mu,\sigma}(B) \propto \prod_{j=1}^{n} \frac{1}{\sigma} \int_{B} \exp\left(-\frac{\|\mu - x_j\|^2}{2\sigma^2}\right)$$

Let the loss function be given by

$$\ell(\mu,\hat{\mu}) = \|\mu - \hat{\mu}\|^2$$

Consider

$$\hat{\mu}_{\mathsf{ML}}(x) = \bar{x}$$

If d > 2, also consider the James-Stein estimator,

$$\hat{\mu}_{\mathsf{JS}}(x) = \left(1 - \frac{(d-2)\bar{s}}{(n+1)\|x\|^2}\right) \bar{x}, \text{ with } \bar{s} = \sum_{i=1}^n (x_i - \bar{x})^2$$

Surpisingly, $\hat{\mu}_{JS}$ outperforms $\hat{\mu}_{ML}$:

Note:

- $\hat{\mu}_{JS}$ is biased: $\mathbb{E}_{\mu} \hat{\mu}_{JS}(x) \neq \mu$.
- \blacktriangleright among the unbiased estimators, $\hat{\mu}_{\rm ML}$ has uniform minimum risk.

To each $\delta \in \mathcal{D}$ corresponds a point in risk space

$$\Theta_{\mathbb{R}}$$

namely

$$r^{\delta} =$$
 the element of ${}^{\Theta}\mathbb{R}$ given by $heta \mapsto r(heta, \delta)$.

We call

$$R^{\mathcal{D}} = \{ r^{\delta} \mid \delta \in \mathcal{D} \}$$

the risk set corresponding to \mathcal{D} and r.

Another important notion is equivalence in risk,

$$\delta \sim \delta' \stackrel{\text{def}}{\iff} r^{\delta} = r^{\delta'}.$$

In some contexts, we identify rules which are equivalent in risk.

Admissibility

Decision rules are partially ordered by

$$\delta' \preceq \delta \iff (\forall \theta \in \Theta) \ r(\theta, \delta') \leq r(\theta, \delta).$$

The strict part of this partial order is domination,

$$\begin{array}{l} \delta' \prec \delta \iff \delta' \preceq \delta \wedge \delta \not\sim \delta' \\ \iff \delta' \preceq \delta \wedge (\exists \theta \in \Theta) \; r(\theta, \delta') < r(\theta, \delta). \end{array}$$

 δ is admissible among $\mathcal{D} \iff \neg \exists \delta' \in \mathcal{D}$ such that $\delta' \prec \delta$.

- Necessary but very insufficient for optimality: Constant estimators are often admissible!
- Admissibility of some interesting procedures, e.g., the so-called Graybill-Deal estimator, is an open problem

Admissibility is a frequentist notion: The state of nature θ is assumed to be unknown, but fixed.

Bayesian methods take a different approach:

Assume θ is itself a random variable, i.e., its behaviour is given by a prior probability distribution

 $\pi \in \mathcal{P}_1(\Theta),$ $\pi(B) = ext{probability that } heta \in B.$

Define the Bayes risk of δ under π as

$$r(\pi,\delta) = \int r(\theta,\delta) \ \pi(\mathrm{d}\theta)$$

This induces a total preordering on \mathcal{D} .

A mimimum is called a Bayes rule w.r.t. π .

Lemma Suppose δ is a Bayes rule w.r.t. π and

 $\pi(U) > 0$ for every non-empty open U

and that for all $\delta \in D$, $\theta \mapsto r(\theta, \delta)$ is continuous. Then δ is admissible.

Proof.

Suppose otherwise that $\delta' \prec \delta$. There is $U \neq \emptyset$ open such that $(\forall \theta \in U) r(\theta, \delta') < r(\theta, \delta)$. Since $\pi(U) > 0$,

$$\begin{aligned} r(\pi, \delta') &= \int_{U} r(\theta, \delta') \ \pi(\mathrm{d}\theta) + \int_{\Theta \setminus U} r(\theta, \delta') \ \pi(\mathrm{d}\theta) \\ &< \int_{U} r(\theta, \delta) \ \pi(\mathrm{d}\theta) + \int_{\Theta \setminus U} r(\theta, \delta) \ \pi(\mathrm{d}\theta) = r(\pi, \delta). \end{aligned}$$

Corollary

Any decision rule δ which is Bayes with respect to a prior π such that

$$(\forall \theta \in \Theta) \ \pi(\{\theta\}) > 0$$

is admissible.

If Θ is finite, there is also an implication from admissible to Bayes:

Theorem (Wald?)

If Θ is finite, $R^{\mathcal{D}}$ is convex, and $\delta_0 \in \mathcal{D}$ is admissible, there is a prior $\pi \in \mathcal{P}_1(\Theta)$ such that δ_0 is π -Bayes.

As in our example, square error is a commonly used loss function:

$$\ell(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2.$$

If $\mathbb A$ is a convex set, this function is convex in the action:

For $\lambda_i \in [0, 1]$, $a_i \in \mathbb{A}$ (i < n) with $\sum_i \lambda_i = 1$, $\ell(\theta, \sum_i \lambda_i a_i) \le \sum_i \lambda_i \ell(\theta, a_i)$

Then, \mathcal{D} with

$$\left(\sum_{i}^{\mathcal{D}}\lambda_{i}\delta_{i}
ight)(x)=\sum_{i}^{\mathbb{A}}\lambda_{i}\delta_{i}(x)$$

becomes a convex set and $r(\theta, \cdot)$ is convex for each θ .

One can cover a wider class of problems through "randomization": Instead of considering procedures

$$\delta \colon \mathbb{X} \to \mathbb{A}$$

allow

$$\delta \colon \mathbb{X} \to \mathcal{P}_1(\mathbb{A})$$

with the interpretation that the statistician takes a random action $a \in \mathbb{A}$ distributed as $\delta(x)$.

The risk is (re)defined as the expected loss and becomes linear in δ :

$$\begin{aligned} r(\theta, \delta) &= \int_{\mathbb{X}} \ell(x, a) \ \delta(x)(\mathrm{d} a) \ P_{\theta}(\mathrm{d} x) \\ &= \mathbb{E}_{\theta} \ \ell(x, \delta(x)) \end{aligned}$$

From now on, assume \mathcal{D} is convex and $r(\theta, \delta)$ is linear in δ .

Decision Theoretic Framework

Components of a statistical decision problem:

- parameterspace Θ,
- ▶ sample space X,
- ▶ the model $(P_{\theta})_{\theta \in \Theta}$,
- ▶ action space A,
- ▶ loss function $\ell : \Theta \times \mathbb{A} \to [0, \infty)$,
- The set of randomized decision rules \mathcal{D} .

Given the unknown state of nature $\theta \in \Theta$, $x \in \mathbb{X}$ is drawn from P_{θ} . Statistician observes x, then selects an action $a \in \mathbb{A}$ according to $\delta(x)$ and suffers the loss $\ell(\theta, a)$.

Goal: Find $\delta \colon \mathbb{X} \to \mathcal{P}_1(\mathbb{A})$ which minimizes (in a specified sense) the expected loss, a.k.a. the risk

$$r(\theta, \delta) = \mathbb{E}_{\theta} \ell(x, \delta(x))$$

Connections between frequentist and Bayesian optimality

An interpretation of the (frequentist) notion of admissibility in a Bayesian framework has been a long-standing goal.

A rule δ is admissible when...

- δ has minimal Bayes risk w.r.t. a an "everywhere positive" prior π, provided risk functions are continuous or Θ countable
- δ is the unique (up to \sim) Bayes rules for some π

Admissible rules are Bayes provided...

- Θ is finite (Wald)
- under compactness and continuity conditions on some or all of
 Θ, X, A, D, r, l (Wald, Berger)

More partial equivalences using: limit of Bayes, generalized Bayes, under technical conditions (Wald, LeCam, Brown, Stone, Berger, Srinivasan) Indeed, there are rules which are admissible but not Bayes:

Example

In the multivariate normal location problem in 2 dimensions under mean square error, the "usual" estimator is admissible but *not* Bayes.

We identify an exact equivalence between frequentist admissibility and Bayes optimality once we allow priors to assign infinitesimal mass to certain sets.

A precursor:

Theorem (Duanmu-Roy, 2017)

A decision rule is extended admissible if and only if it is non-standard Bayes.

(For this talk, you don't need to know what "extended admissible" and "non-standard Bayes" are.)

Nonstandard Decision Theory

We work in a superstructure:

$$V(\mathbb{R}) := V_{\omega}(\mathbb{R}) = \bigcup_{n \in \mathbb{N}} V_n(\mathbb{R}) = \mathbb{R} \cup \mathcal{P}(\mathbb{R}) \cup \dots,$$

* $V(\mathbb{R}) := V(\mathbb{R})^I / \mathcal{U}$

where \mathcal{U} is an ultrafilter on a set I.

Nonstandard people call the elementary embedding the star map,

$${}^*(\cdot)\colon V(\mathbb{R})\to {}^*V(\mathbb{R}), \\ x\mapsto {}^*x$$

We can ask that ${}^*V(\mathbb{R})$ is saturated: If $\{\phi_{\xi}(x) \mid \xi < \theta\}$ is finitely satisfiable by elements of $V_n(\mathbb{R})$, then

$$(\exists x \in {}^*V_n(\mathbb{R})) \ (\forall \xi < \theta) \; {}^*\phi_{\xi}(x).$$

Thus, in $*\mathbb{R}$, there are infinitesimals:

$$(\exists \varepsilon \in {}^*\mathbb{R}) \ 0 < r \land (\forall n \in \mathbb{N}) \ \varepsilon < \frac{1}{n}$$

Figure: The hyperreals $*\mathbb{R}$

Hyperpriors

A hyperprior is an element Π of $^*\mathcal{P}_1(\Theta)$. That is, a $^*\sigma$ -additive map

 $\Pi\colon {}^*\mathcal{P}(\Theta) \to {}^*[0,1]$

*[0,1]

with $\Pi(^*\Theta) = 1$. The set

consists of reals of the form

$$r = \underbrace{r'}_{=\mathrm{st}(r)} + \varepsilon$$

where $r' \in [0, 1]$ and $\varepsilon \in {}^*\mathbb{R}$ is infinitesimal.

In contrast to an ordinary prior, Π can assign infinitesimal weight!

An Example: multivariate normal location

Consider estimating the mean of an *n*-dimensional multivariate normal distribution, given just one sample \vec{x} .

Let K be infinite and take the non-standard prior

$$\Pi_{\mathcal{K}}(\mathrm{d}\vec{\mu})\propto\frac{1}{\mathcal{K}}\exp(-\frac{1}{2\mathcal{K}^2}\mu^2)$$

The prior density is near constant on \mathbb{R}^n . The corresponding Bayes rule is:

$$\delta_{\Pi_{K}}(\vec{x}) = \frac{K^2}{K^2 + 1}\vec{x}$$

but for n = 1, the "usual" estimate

$$\delta(\vec{x}) = \vec{x}$$

has minimal risk under Π_K among the standard rules.

Allowing priors with infinitesimals, we can give a Bayesian interpretation of admissibility.

Theorem (DRS-21)

A decision rule δ_0 is admissible among D if and only if there exists a hyperprior Π on $^*\Theta$ such that

- 1. $r(*\delta_0, \Pi) \leq r(*\delta, \Pi)$ for all $\delta \in \mathcal{D}$ and
- 2. $\Pi(^*\theta) > 0$ for all $\theta \in \Theta$.

Some ideas from the proof

Recall:

Theorem (Wald?)

If Θ is finite and $\delta_0 \in \mathcal{D}$ is admissible, there is a prior $\pi \in \mathcal{P}_1(\Theta)$ such that δ_0 is π -Bayes.

Theorem (Blackwell-Girshick?)

Suppose Θ is finite, \mathcal{D} is the convex hull of finitely many points, and $\delta_0 \in \mathcal{D}$ is admissible. Then there is a prior $\pi \in \mathcal{P}_1(\Theta)$ such that δ_0 is π -Bayes and $\pi(\theta) > 0$ for all $\theta \in \Theta$.

Lemma

Suppose δ_0 is admissible and $\mathcal{D}_0 \subseteq \mathcal{D}$ is finite. Then there is a finite set $\Theta_0 \subseteq \Theta$ such that for each $\delta \in \operatorname{conv}(\mathcal{D}_0) \setminus \{\delta_0\}$, there is $\theta \in \Theta_0$ such that $r(\theta, \delta_0) < r(\theta, \delta)$. Fact Given $X \in V(\mathbb{R})$ we can find hyperfinite $\tilde{X} \in {}^*V(\mathbb{R})$ such that $\{{}^*x \mid x \in X\} \subseteq \tilde{X} \subseteq {}^*X.$

Proof.

The following gives a finitely satisfiable set of sentences:

$$\phi_x(Y) := Y$$
 is finite and $x \in Y$ $(x \in X)$

By saturation there exists \tilde{X} satisfying

 $(\forall x \in X) * \phi_x(\tilde{X})$

i.e., $ilde{X}$ is hyperfinite and $\{^*x \mid x \in X\} \subseteq ilde{X}$.

Theorem

If δ_0 is admissible among $\mathcal{D},$ there exists a hyperprior Π on $^*\Theta$ such that

1.
$$r(\delta_0, \Pi) \leq r(\delta, \Pi)$$
 for all $\delta \in D$ and

2.
$$\Pi(^*\theta) > 0$$
 for all $\theta \in \Theta$.

Proof. Find hyperfinite $\tilde{\Theta}$ and $\tilde{\mathcal{D}}$ s.t.

$$\begin{split} \Theta &\subseteq \tilde{\Theta} \subseteq {}^*\Theta, \\ \{{}^*\delta \mid \delta \in X\} \subseteq \tilde{\mathcal{D}} \subseteq {}^*\mathcal{D}. \end{split}$$

By transfer, ${}^*\delta_0$ is admissible among ${}^*\mathcal{D} \supseteq {}^*\operatorname{conv}(\tilde{\mathcal{D}})$. By the transfer of a previous Lemma, we can assume admissibility of ${}^*\delta_0$ among ${}^*\operatorname{conv}(\tilde{\mathcal{D}})$ is witnessed on $\tilde{\Theta}$. By ${}^*\operatorname{Blackwell-Girshick}$, there exists a hyperprior Π as required. \Box

Blyth's method

Theorem

Suppose $\Theta \subseteq \mathbb{R}^n$ is open, procedures with continuous risk functions form a complete class (\equiv every discontinuous procedure is dominated by a continuous one), and δ_0 has continuous risk.

Then δ_0 is admissible if there is a sequence π_0, π_1, \ldots of measures such that

•
$$r(\pi_n, \delta_0) < \infty$$
 for all $n \in \mathbb{N}$,

► For any non-empty open $O \subseteq \Theta$,

$$\lim_{n\to\infty}\frac{r(\pi_n,\delta_0)-r(\pi_n,\delta^{\pi_n})}{\pi_n(O)}=0$$

An Application: Nonstandard Blyth

Theorem (DR**S**22+)

 δ_0 is admissible iff there exists

$$\blacktriangleright \ \Pi \in {}^* \big(\, \mathcal{P}_1(\Theta) \big)$$

•
$$\tilde{\rho} \in {}^*\mathbb{R}$$
 with $\tilde{\rho} > 0$

such that

1.
$$\tilde{\rho} \leq \Pi(\theta)$$
 for all $\theta \in \Theta$,
2.
$$\frac{*r(\Pi, *\delta_0) - \inf_{\delta \in \mathcal{D}} *r(\Pi, *\delta)}{\tilde{\rho}} \approx 0$$

An Application (estimating a common normal location)

Suppose we have two groups of random variables,

$$X_{i,1}, \ldots, X_{i,n}$$
 (*i* = 0, 1)

where each group is i.i.d. as follows:

$$X_{0,j} \sim \mathcal{N}(\mu, \sigma_0), \quad X_{1,j} \sim \mathcal{N}(\mu, \sigma_1)$$

If σ_0, σ_1 are known,

$$\hat{\mu}(x) = rac{\sigma_1^2}{\sigma_0^2 + \sigma_1^2} ar{x}_0 + rac{\sigma_0^2}{\sigma_0^2 + \sigma_1^2} ar{x}_1$$

is a reasonable estimator.

For unknown σ_0, σ_1 , Graybill-Deal (1951) suggested

$$\hat{\mu}_{\mathsf{GD}}(x) = rac{s_1^2}{s_0^2 + s_1^2} ar{x}_0 + rac{s_0^2}{s_0^2 + s_1^2} ar{x}_1$$

where

$$s_i^2 = rac{\sum_j (ar{x}_i - x_{i,j})^2}{n-1}$$

- Known to be extended admissible among scale and location invariant estimators
- Not known to be admissible (among all estimators)

Let $\ensuremath{\mathcal{C}}$ be the class of all estimators of the form

$$\hat{\mu}(x) = \bar{x}_0 + (\bar{x}_1 - \bar{x}_0) \cdot \hat{\phi}(s_1^2, s_2^2)$$

for an arbitrary function $\hat{\phi}$.

Note

The Graybill-Deal estimator itself is of this form:

$$\hat{\mu}_{\mathsf{GD}}(x) = ar{x}_0 + (ar{x}_1 - ar{x}_0) \cdot rac{s_1^2}{s_1^2 + s_1^2}$$

Theorem

The Graybill-Deal estimator $\hat{\mu}_{GD}$ is admissible among C.

Thank You!

Find our paper at https://arxiv.org/

Lemma

Suppose δ_0 is admissible, $\mathcal{D}_0 \subseteq \mathcal{D}$ is finite, and $\delta_0 \notin \operatorname{conv}(\mathcal{D}_0)$. Then there is a finite set $\Theta_0 \subseteq \Theta$ such that for each $\delta \in \operatorname{conv}(\mathcal{D}_0)$, there is $\theta \in \Theta_0$ such that $r(\theta, \delta_0) < r(\theta, \delta)$.

Proof.

Otherwise, for every finite $\Theta_0 \subseteq \Theta$ there is $\delta \in \operatorname{conv}(\mathcal{D}_0)$ such that $r^{\delta} \upharpoonright \Theta_0 \leq r^{\delta_0} \upharpoonright \Theta_0$.

By saturation, there exists $\Delta \in *conv(\mathcal{D}_0)$ such that $*r^{\Delta} \upharpoonright \Theta \leq r^{\delta_0}$. Write

$$\Delta = \Lambda_0^* \delta_0 + \ldots + \Lambda_n^* \delta_n$$

But then letting

$$\delta := \operatorname{st}(\Lambda_0)\delta_0 + \ldots + \operatorname{st}(\Lambda_n)\delta_n$$

we have $r^{\delta} \leq r^{\delta_0}$. By admissibility, $r^{\delta} = r^{\delta_0}$. Hence $r^{\delta_0} \in \operatorname{conv}(R^{\mathcal{D}_0})$, contradiction.

Lemma

Suppose δ_0 is admissible and $\mathcal{D}_0 \subseteq \mathcal{D}$ is finite. Then there is a finite set $\Theta_0 \subseteq \Theta$ such that for each $\delta \in \operatorname{conv}(\mathcal{D}_0) \setminus \{\delta_0\}$, there is $\theta \in \Theta_0$ such that $r(\theta, \delta_0) < r(\theta, \delta)$.

Proof.

Can assume $\delta_0 \in \operatorname{conv}(\mathcal{D}_0)$.

- 1. Decompose $conv(\mathcal{D}_0)$ into convex sets C_0, \ldots, C_m each having δ_0 as an extreme point.
- 2. Can assume that δ_0 is an extreme point of $conv(\mathcal{D}_0)$. Let \mathcal{D}'_0 be the set of extreme points of $conv(\mathcal{D}_0)$, excluding δ_0 . Choose Θ_0 as in the previous lemma.
- 3. For every $\delta \in \operatorname{conv}(\mathcal{D}_0)$ is a convex combination

$$r^{\delta} = \lambda r^{\delta_0} + \lambda' r^{\delta'}$$

with $\delta' \in \mathcal{D}'_0$. For some $\theta \in \Theta_0$, $r^{\delta'}(\theta) > r^{\delta_0}(\theta)$ and so $r^{\delta}(\theta) = \lambda r^{\delta_0}(\theta) + \lambda' r^{\delta'}(\theta) > r^{\delta_0}(\theta)$.