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1. Want to measure an empirical quantity ξ

2. Make n (imprecise) measurements, obtaining x1, . . . , xn.

3. Give an estimate of ξ, as a function of ~x = (x1, . . . , xn), e.g.:

ξ̂(~x) =

∑n
i=1 xi
n

= x̄

or

ξ̂(~x) =
min{x1, . . . , xn}+ max{x1, . . . , xn}

2

But which one of these, and why?

And why not completely other estimates?



Perhaps we want to estimate the precision of the measurement.

E.g., by

σ̂(~x) =

∑n
i=1(x̄ − xi )

2

n − 1

or, for some a > 0, by

σ̂a(~x) =

∑n
i=1(x̄ − xi )

2

a

e.g., with a = n + 1.

But again: Which one of these? Why?

And why not completely other estimates?



To compare estimators, be inspired by. . . game theory!

Player I (Nature) chooses θ ∈ Θ

I Θ . . . . . . Parameterspace (possible states of nature)

Player II (Statistician) chooses δ : X→ A from D

I X . . . . . . Samplespace (possible measurement outcomes)

I A . . . . . . Actionspace (possible estimates, or accept/reject H0)

I D . . . . . . decision procedures available to Statistician

Outcome of the game: Player II suffers a loss of

r(θ, δ)



Where do we get r(θ, δ) from?

1. Fix a family of measures (Pθ)θ∈Θ on X.
Assume that under the condition that Nature chooses θ, the
probability of measuring x ∈ B is given as:

P(x ∈ B | θ) = Pθ(B)

2. Fix a loss function

(θ, θ̂) 7→ `(θ, θ̂) ∈ R>0

3. For each δ : X→ A, define its risk function as its expected loss

r δ(θ) ≡ r(θ, δ) :=

∫
X
`
(
θ, δ(x)

)
Pθ(dx)

= Eθ `(θ, x)



Figure: Some risk function in ΘR
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Example: Normal location

Let X = (Rd)n, i.e., we take n samples x1, . . . , xn from Rd .

P(x ∈ B | µ, σ) = Pµ,σ(B) ∝
n∏

j=1

1

σ

∫
B

exp

(
−
‖µ− xj‖2

2σ2

)
Let the loss function be given by

`(µ, µ̂) = ‖µ− µ̂‖2

Consider
µ̂ML(x) = x̄

If d > 2, also consider the James-Stein estimator,

µ̂JS(x) =

(
1− (d − 2)s̄

(n + 1)‖x‖2

)
x̄ , with s̄ =

n∑
i=1

(xi − x̄)2



Surpisingly, µ̂JS outperforms µ̂ML:

Note:

I µ̂JS is biased: Eµ µ̂JS(x) 6= µ.

I among the unbiased estimators, µ̂ML has uniform minimum
risk.



To each δ ∈ D corresponds a point in risk space

ΘR,

namely

r δ = the element of ΘR given by θ 7→ r(θ, δ).

We call
RD = {r δ | δ ∈ D}

the risk set corresponding to D and r .

Another important notion is equivalence in risk,

δ ∼ δ′ def⇐⇒ r δ = r δ
′
.

In some contexts, we identify rules which are equivalent in risk.



Admissibility

Decision rules are partially ordered by

δ′ � δ ⇐⇒ (∀θ ∈ Θ) r(θ, δ′) ≤ r(θ, δ).

The strict part of this partial order is domination,

δ′ ≺ δ ⇐⇒ δ′ � δ ∧ δ 6∼ δ′

⇐⇒ δ′ � δ ∧ (∃θ ∈ Θ) r(θ, δ′) < r(θ, δ).

δ is admissible among D ⇐⇒ ¬∃δ′ ∈ D such that δ′ ≺ δ.

I Necessary but very insufficient for optimality: Constant
estimators are often admissible!

I Admissibility of some interesting procedures, e.g., the
so-called Graybill-Deal estimator, is an open problem



Admissibility is a frequentist notion: The state of nature θ is
assumed to be unknown, but fixed.

Bayesian methods take a different approach:

Assume θ is itself a random variable, i.e., its behaviour is given by
a prior probability distribution

π ∈ P1(Θ),

π(B) = probability that θ ∈ B.

Define the Bayes risk of δ under π as

r(π, δ) =

∫
r(θ, δ) π(dθ)

This induces a total preordering on D.

A mimimum is called a Bayes rule w.r.t. π.



Lemma
Suppose δ is a Bayes rule w.r.t. π and

π(U) > 0 for every non-empty open U

and that for all δ ∈ D, θ 7→ r(θ, δ) is continuous. Then δ is
admissible.

Proof.
Suppose otherwise that δ′ ≺ δ. There is U 6= ∅ open such that
(∀θ ∈ U) r(θ, δ′) < r(θ, δ). Since π(U) > 0,

r(π, δ′) =

∫
U
r(θ, δ′) π(dθ) +

∫
Θ\U

r(θ, δ′) π(dθ)

<

∫
U
r(θ, δ) π(dθ) +

∫
Θ\U

r(θ, δ) π(dθ) = r(π, δ).



Corollary

Any decision rule δ which is Bayes with respect to a prior π such
that

(∀θ ∈ Θ) π({θ}) > 0

is admissible.

If Θ is finite, there is also an implication from admissible to Bayes:

Theorem (Wald?)

If Θ is finite, RD is convex, and δ0 ∈ D is admissible, there is a
prior π ∈ P1(Θ) such that δ0 is π-Bayes.



As in our example, square error is a commonly used loss function:

`(θ, θ̂) = (θ − θ̂)2.

If A is a convex set, this function is convex in the action:

For λi ∈ [0, 1], ai ∈ A (i < n) with
∑

i λi = 1,

`(θ,
∑
i

λiai ) ≤
∑
i

λi`(θ, ai )

Then, D with ( D∑
i

λiδi

)
(x) =

A∑
i

λiδi (x)

becomes a convex set and r(θ, ·) is convex for each θ.



One can cover a wider class of problems through “randomization”:

Instead of considering procedures

δ : X→ A

allow
δ : X→ P1(A)

with the interpretation that the statistician takes a random action
a ∈ A distributed as δ(x).

The risk is (re)defined as the expected loss and becomes linear in δ:

r(θ, δ) =

∫
X
`
(
x , a
)
δ(x)(da) Pθ(dx)

= Eθ `
(
x , δ(x)

)
From now on, assume D is convex and r(θ, δ) is linear in δ.



Decision Theoretic Framework

Components of a statistical decision problem:

I parameterspace Θ,

I sample space X,

I the model (Pθ)θ∈Θ,

I action space A,

I loss function ` : Θ× A → [0,∞),

I The set of randomized decision rules D.

Given the unknown state of nature θ ∈ Θ, x ∈ X is drawn from Pθ.
Statistician observes x , then selects an action a ∈ A according to
δ(x) and suffers the loss `(θ, a).

Goal: Find δ : X→ P1(A) which minimizes (in a specified sense)
the expected loss, a.k.a. the risk

r(θ, δ) = Eθ `
(
x , δ(x)

)



Connections between frequentist and Bayesian optimality

An interpretation of the (frequentist) notion of admissibility in a
Bayesian framework has been a long-standing goal.

A rule δ is admissible when. . .

I δ has minimal Bayes risk w.r.t. a an “everywhere positive”
prior π, provided risk functions are continuous or Θ countable

I δ is the unique (up to ∼) Bayes rules for some π

Admissible rules are Bayes provided. . .

I Θ is finite (Wald)

I under compactness and continuity conditions on some or all of
Θ, X, A, D, r , ` (Wald, Berger)

More partial equivalences using: limit of Bayes, generalized Bayes,
under technical conditions (Wald, LeCam, Brown, Stone, Berger, Srinivasan)



Indeed, there are rules which are admissible but not Bayes:

Example
In the multivariate normal location problem in 2 dimensions under
mean square error, the “usual” estimator is admissible but not
Bayes.



We identify an exact equivalence between frequentist admissibility
and Bayes optimality once we allow priors to assign infinitesimal
mass to certain sets.

A precursor:

Theorem (Duanmu-Roy, 2017)

A decision rule is extended admissible if and only if it is
non-standard Bayes.

(For this talk, you don’t need to know what “extended admissible”
and “non-standard Bayes” are.)



Nonstandard Decision Theory

We work in a superstructure:

V (R) := Vω(R) =
⋃
n∈N

Vn(R) = R ∪ P(R) ∪ . . . ,

∗V (R) := V (R)I/U

where U is an ultrafilter on a set I .

Nonstandard people call the elementary embedding the star map,

∗(·) : V (R)→ ∗V (R),

x 7→ ∗x

We can ask that ∗V (R) is saturated:
If {φξ(x) | ξ < θ} is finitely satisfiable by elements of Vn(R), then

(∃x ∈ ∗Vn(R)) (∀ξ < θ) ∗φξ(x).



Thus, in ∗R, there are infinitesimals:

(∃ε ∈ ∗R) 0 < r ∧ (∀n ∈ N) ε <
1

n

Figure: The hyperreals ∗R
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Hyperpriors

A hyperprior is an element Π of ∗P1(Θ).
That is, a ∗σ-additive map

Π: ∗P(Θ)→ ∗[0, 1]

with Π(∗Θ) = 1. The set
∗[0, 1]

consists of reals of the form

r = r ′︸︷︷︸
=st(r)

+ε

where r ′ ∈ [0, 1] and ε ∈ ∗R is infinitesimal.

In contrast to an ordinary prior, Π can assign infinitesimal weight!



An Example: multivariate normal location

Consider estimating the mean of an n-dimensional multivariate
normal distribution, given just one sample ~x .

Let K be infinite and take the non-standard prior

ΠK (d~µ) ∝ 1

K
exp(− 1

2K 2
µ2)

The prior density is near constant on Rn.
The corresponding Bayes rule is:

δΠK
(~x) =

K 2

K 2 + 1
~x

but for n = 1, the “usual” estimate

δ(~x) = ~x

has minimal risk under ΠK among the standard rules.



Characterization of admissibility

Allowing priors with infinitesimals, we can give a Bayesian
interpretation of admissibility.

Theorem (DRS-21)

A decision rule δ0 is admissible among D if and only if there exists
a hyperprior Π on ∗Θ such that

1. ∗r(∗δ0,Π) ≤ ∗r(∗δ,Π) for all δ ∈ D and

2. Π(∗θ) > 0 for all θ ∈ Θ.



Some ideas from the proof

Recall:

Theorem (Wald?)

If Θ is finite and δ0 ∈ D is admissible, there is a prior π ∈ P1(Θ)
such that δ0 is π-Bayes.

Theorem (Blackwell-Girshick?)

Suppose Θ is finite, D is the convex hull of finitely many points,
and δ0 ∈ D is admissible. Then there is a prior π ∈ P1(Θ) such
that δ0 is π-Bayes and π(θ) > 0 for all θ ∈ Θ.



Lemma
Suppose δ0 is admissible and D0 ⊆ D is finite.
Then there is a finite set Θ0 ⊆ Θ such that for each
δ ∈ conv(D0) \ {δ0}, there is θ ∈ Θ0 such that r(θ, δ0) < r(θ, δ).



Fact
Given X ∈ V (R) we can find hyperfinite X̃ ∈ ∗V (R) such that

{∗x | x ∈ X} ⊆ X̃ ⊆ ∗X .

Proof.
The following gives a finitely satisfiable set of sentences:

φx(Y ) := Y is finite and x ∈ Y (x ∈ X )

By saturation there exists X̃ satisfying

(∀x ∈ X ) ∗φx(X̃ )

i.e., X̃ is hyperfinite and {∗x | x ∈ X} ⊆ X̃ .



Theorem
If δ0 is admissible among D, there exists a hyperprior Π on ∗Θ
such that

1. ∗r(∗δ0,Π) ≤ ∗r(∗δ,Π) for all δ ∈ D and

2. Π(∗θ) > 0 for all θ ∈ Θ.

Proof.
Find hyperfinite Θ̃ and D̃ s.t.

Θ ⊆ Θ̃ ⊆ ∗Θ,
{∗δ | δ ∈ X} ⊆ D̃ ⊆ ∗D.

By transfer, ∗δ0 is admissible among ∗D ⊇ ∗conv(D̃).
By the transfer of a previous Lemma, we can assume admissibility
of ∗δ0 among ∗conv(D̃) is witnessed on Θ̃.
By ∗Blackwell-Girshick, there exists a hyperprior Π as required.



Blyth’s method

Theorem
Suppose Θ ⊆ Rn is open, procedures with continuous risk
functions form a complete class (≡ every discontinuous procedure
is dominated by a continuous one), and δ0 has continous risk.

Then δ0 is admissible if there is a sequence π0, π1, . . . of measures
such that

I r(πn, δ0) <∞ for all n ∈ N,

I For any non-empty open O ⊆ Θ,

lim
n→∞

r(πn, δ0)− r(πn, δ
πn)

πn(O)
= 0



An Application: Nonstandard Blyth

Theorem (DRS22+)

δ0 is admissible iff there exists

I Π ∈ ∗
(
P1(Θ)

)
I ρ̃ ∈ ∗R with ρ̃ > 0

such that

1. ρ̃ ≤ Π(θ) for all θ ∈ Θ,

2. ∗r(Π, ∗δ0)− infδ∈D
∗r(Π, ∗δ)

ρ̃
≈ 0



An Application (estimating a common normal location)

Suppose we have two groups of random variables,

Xi ,1, . . . ,Xi ,n (i = 0, 1)

where each group is i.i.d. as follows:

X0,j ∼ N (µ, σ0), X1,j ∼ N (µ, σ1)

If σ0, σ1 are known,

µ̂(x) =
σ2

1

σ2
0 + σ2

1

x̄0 +
σ2

0

σ2
0 + σ2

1

x̄1

is a reasonable estimator.



For unknown σ0, σ1, Graybill-Deal (1951) suggested

µ̂GD(x) =
s2

1

s2
0 + s2

1

x̄0 +
s2

0

s2
0 + s2

1

x̄1

where

s2
i =

∑
j(x̄i − xi ,j)

2

n − 1

I Known to be extended admissible among scale and location
invariant estimators

I Not known to be admissible (among all estimators)



Let C be the class of all estimators of the form

µ̂(x) = x̄0 + (x̄1 − x̄0) · φ̂(s2
1 , s

2
2 )

for an arbitrary function φ̂.

Note
The Graybill-Deal estimator itself is of this form:

µ̂GD(x) = x̄0 + (x̄1 − x̄0) · s2
1

s2
1 + s2

1

Theorem
The Graybill-Deal estimator µ̂GD is admissible among C.



Thank You!

Find our paper at https://arxiv.org/

https://arxiv.org/


Lemma
Suppose δ0 is admissible, D0 ⊆ D is finite, and δ0 /∈ conv(D0).
Then there is a finite set Θ0 ⊆ Θ such that for each δ ∈ conv(D0),
there is θ ∈ Θ0 such that r(θ, δ0) < r(θ, δ).

Proof.
Otherwise, for every finite Θ0 ⊆ Θ there is δ ∈ conv(D0) such that
r δ �Θ0 ≤ r δ0 �Θ0.
By saturation, there exists ∆ ∈ ∗conv(D0) such that ∗r∆ �Θ ≤ r δ0 .
Write

∆ = Λ0
∗δ0 + . . .+ Λn

∗δn

But then letting

δ := st(Λ0)δ0 + . . .+ st(Λn)δn

we have r δ ≤ r δ0 . By admissibility, r δ = r δ0 . Hence
r δ0 ∈ conv(RD0), contradiction.



Lemma
Suppose δ0 is admissible and D0 ⊆ D is finite.
Then there is a finite set Θ0 ⊆ Θ such that for each
δ ∈ conv(D0) \ {δ0}, there is θ ∈ Θ0 such that r(θ, δ0) < r(θ, δ).

Proof.
Can assume δ0 ∈ conv(D0).

1. Decompose conv(D0) into convex sets C0, . . . ,Cm each
having δ0 as an extreme point.

2. Can assume that δ0 is an extreme point of conv(D0). Let D′0
be the set of extreme points of conv(D0), excluding δ0.
Choose Θ0 as in the previous lemma.

3. For every δ ∈ conv(D0) is a convex combination

r δ = λr δ0 + λ′r δ
′

with δ′ ∈ D′0. For some θ ∈ Θ0, r δ
′
(θ) > r δ0(θ) and so

r δ(θ) = λr δ0(θ) + λ′r δ
′
(θ) > r δ0(θ).
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