Adding a club of former regulars to an inaccessible cardinal.

Sittinon Jirattikansakul

Tel Aviv University, Israel

SETTOP 2022 23rd August, 2022

Sittinon Jirattikansakul (Tel Aviv University, Adding a club of former regulars to an inacce/SETTOP 202223rd August, 2022 1/10

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Joint work with Moti Gitik.

イロト イヨト イヨト イヨト

- 2

Prikry-type forcings often play an important role for singular cardinals.

イロト イボト イヨト イヨト

- 34

Prikry-type forcings often play an important role for singular cardinals.

• The vanilla Prikry forcing singularizes κ to have cofinality ω , does not add bounded subsets of κ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Prikry-type forcings often play an important role for singular cardinals.

- The vanilla Prikry forcing singularizes κ to have cofinality ω , does not add bounded subsets of κ .
- Magidor forcing, Radin forcing singularize κ to have any prescribed cofinality below κ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Prikry-type forcings often play an important role for singular cardinals.

- The vanilla Prikry forcing singularizes κ to have cofinality ω , does not add bounded subsets of κ .
- Magidor forcing, Radin forcing singularize κ to have any prescribed cofinality below κ .
- More forcings: Tree Prikry forcing, supercompact Prikry forcing, diagonal Prikry forcing, Prikry-type forcings with interleaved forcings, ...

Prikry-type forcings also have some applications on global combinatorial properties.

イロト 不得 トイヨト イヨト 二日

Prikry-type forcings also have some applications on global combinatorial properties.

<日

<</p>

Prikry-type forcings also have some applications on global combinatorial properties.

- Modified Radin forcings may give a ZFC model V_{κ} , where there is a club class (of V_{κ}) such that some combinatorial properties hold.

<日

<</p>

Prikry-type forcings also have some applications on global combinatorial properties.

- Modified Radin forcings may give a ZFC model V_{κ} , where there is a club class (of V_{κ}) such that some combinatorial properties hold.
- (Foreman, Woodin) GCH fails everywhere.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Prikry-type forcings also have some applications on global combinatorial properties.

- Modified Radin forcings may give a ZFC model V_{κ} , where there is a club class (of V_{κ}) such that some combinatorial properties hold.
- (Foreman, Woodin) GCH fails everywhere.
- (Ben-Neria, Lambie-Hanson, Unger) club class of singulars where SCH and weak squares fail.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Prikry-type forcings also have some applications on global combinatorial properties.

- Modified Radin forcings may give a ZFC model V_{κ} , where there is a club class (of V_{κ}) such that some combinatorial properties hold.
- (Foreman, Woodin) GCH fails everywhere.
- (Ben-Neria, Lambie-Hanson, Unger) club class of singulars where SCH and weak squares fail.
- (Benhamou, Garti, Poveda) failure of Galvin's property at every successor of a singular cardinal.

With the specific assumption below $\circ(\kappa) = \kappa$, Gitik produced a forcing which shoots a club of ground model-regular cardinals, while maintaining inaccessibility of κ .

- 4 回 ト 4 三 ト 4 三 ト

With the specific assumption below $\circ(\kappa) = \kappa$, Gitik produced a forcing which shoots a club of ground model-regular cardinals, while maintaining inaccessibility of κ . It is a two-step iteration $\mathbb{P} * \dot{\mathbb{Q}}$.

・ 何 ト ・ ヨ ト ・ ヨ ト

With the specific assumption below $\circ(\kappa) = \kappa$, Gitik produced a forcing which shoots a club of ground model-regular cardinals, while maintaining inaccessibility of κ . It is a two-step iteration $\mathbb{P} * \dot{\mathbb{Q}}$.

• \mathbb{P} forces to get a fat stationary set S of V-regular cardinals, and κ is still inaccessible.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

With the specific assumption below $\circ(\kappa) = \kappa$, Gitik produced a forcing which shoots a club of ground model-regular cardinals, while maintaining inaccessibility of κ . It is a two-step iteration $\mathbb{P} * \dot{\mathbb{Q}}$.

- \mathbb{P} forces to get a fat stationary set S of V-regular cardinals, and κ is still inaccessible.
- $\Vdash_{\mathbb{P}} \dot{\mathbb{Q}}$ shoots a club subset using closed bounded subsets of \dot{S} .

With the specific assumption below $\circ(\kappa) = \kappa$, Gitik produced a forcing which shoots a club of ground model-regular cardinals, while maintaining inaccessibility of κ . It is a two-step iteration $\mathbb{P} * \dot{\mathbb{Q}}$.

- \mathbb{P} forces to get a fat stationary set S of V-regular cardinals, and κ is still inaccessible.
- $\Vdash_{\mathbb{P}} \dot{\mathbb{Q}}$ shoots a club subset using closed bounded subsets of \dot{S} .

V-Regular cardinals outside the club may be singularized at the first stage.

くぼう くほう くほう しほ

Definition

Let κ be a strongly inaccessible cardinal.

A D N A B N A B N A B N

э

Definition

Let κ be a strongly inaccessible cardinal. $\vec{U} = \langle U(\alpha, \beta) \mid \beta < \circ(\alpha), \alpha < \kappa \rangle$ is coherent if

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition

Let κ be a strongly inaccessible cardinal. $\vec{U} = \langle U(\alpha, \beta) \mid \beta < \circ(\alpha), \alpha < \kappa \rangle$ is coherent if

• each $U(\alpha, \beta)$ is a normal measure on α .

A B b A B b

Definition

Let κ be a strongly inaccessible cardinal. $\vec{U} = \langle U(\alpha, \beta) \mid \beta < \circ(\alpha), \alpha < \kappa \rangle$ is coherent if

• each $U(\alpha, \beta)$ is a normal measure on α .

2 let
$$j = j_{U(\alpha,\beta)}$$
. Then $j(\vec{U}) \upharpoonright (\alpha + 1) = \vec{U} \upharpoonright (\alpha, \beta)$.

A B b A B b

Definition

Let κ be a strongly inaccessible cardinal. $\vec{U} = \langle U(\alpha, \beta) \mid \beta < \circ(\alpha), \alpha < \kappa \rangle$ is coherent if

• each $U(\alpha, \beta)$ is a normal measure on α .

$$e Iet j = j_{U(\alpha,\beta)}. Then j(\vec{U}) \upharpoonright (\alpha+1) = \vec{U} \upharpoonright (\alpha,\beta).$$

Theorem (Gitik-J.)

Let κ be an inaccessible cardinal.

・ 同 ト ・ ヨ ト ・ ヨ

Definition

Let κ be a strongly inaccessible cardinal. $\vec{U} = \langle U(\alpha, \beta) \mid \beta < \circ(\alpha), \alpha < \kappa \rangle$ is coherent if

• each $U(\alpha, \beta)$ is a normal measure on α .

2 let
$$j = j_{U(\alpha,\beta)}$$
. Then $j(\vec{U}) \upharpoonright (\alpha + 1) = \vec{U} \upharpoonright (\alpha,\beta)$.

Theorem (Gitik-J.)

Let κ be an inaccessible cardinal. Assume \vec{U} as above is coherent, and for $\nu < \kappa$, $\{\alpha \mid \circ(\alpha) \ge \nu\}$ is stationary.

▲ 同 ▶ → 三 ▶

Definition

Let κ be a strongly inaccessible cardinal. $\vec{U} = \langle U(\alpha, \beta) \mid \beta < \circ(\alpha), \alpha < \kappa \rangle$ is coherent if

• each $U(\alpha, \beta)$ is a normal measure on α .

2 let
$$j = j_{U(\alpha,\beta)}$$
. Then $j(\vec{U}) \upharpoonright (\alpha + 1) = \vec{U} \upharpoonright (\alpha, \beta)$.

Theorem (Gitik-J.)

Let κ be an inaccessible cardinal.Assume \vec{U} as above is coherent, and for $\nu < \kappa$, $\{\alpha \mid \circ(\alpha) \ge \nu\}$ is stationary. Then there is a forcing which adds a club subset of κ containing V-regular cardinals,

< 回 > < 三 > < 三 >

Definition

Let κ be a strongly inaccessible cardinal. $\vec{U} = \langle U(\alpha, \beta) \mid \beta < \circ(\alpha), \alpha < \kappa \rangle$ is coherent if

• each $U(\alpha, \beta)$ is a normal measure on α .

2 let
$$j = j_{U(\alpha,\beta)}$$
. Then $j(\vec{U}) \upharpoonright (\alpha + 1) = \vec{U} \upharpoonright (\alpha, \beta)$.

Theorem (Gitik-J.)

Let κ be an inaccessible cardinal.Assume \vec{U} as above is coherent, and for $\nu < \kappa$, $\{\alpha \mid \circ(\alpha) \ge \nu\}$ is stationary. Then there is a forcing which adds a club subset of κ containing V-regular cardinals, preserves all cardinals,

< 回 > < 三 > < 三 >

Definition

Let κ be a strongly inaccessible cardinal. $\vec{U} = \langle U(\alpha, \beta) \mid \beta < \circ(\alpha), \alpha < \kappa \rangle$ is coherent if

• each $U(\alpha, \beta)$ is a normal measure on α .

2 let
$$j = j_{U(\alpha,\beta)}$$
. Then $j(\vec{U}) \upharpoonright (\alpha + 1) = \vec{U} \upharpoonright (\alpha, \beta)$.

Theorem (Gitik-J.)

Let κ be an inaccessible cardinal.Assume \vec{U} as above is coherent, and for $\nu < \kappa$, $\{\alpha \mid \circ(\alpha) \ge \nu\}$ is stationary.Then there is a forcing which adds a club subset of κ containing V-regular cardinals, preserves all cardinals, preserves cofinalities of regular cardinals outside the club,

< 回 > < 三 > < 三 >

Definition

Let κ be a strongly inaccessible cardinal. $\vec{U} = \langle U(\alpha, \beta) | \beta < \circ(\alpha), \alpha < \kappa \rangle$ is coherent if

• each $U(\alpha, \beta)$ is a normal measure on α .

2 let
$$j = j_{U(\alpha,\beta)}$$
. Then $j(\vec{U}) \upharpoonright (\alpha + 1) = \vec{U} \upharpoonright (\alpha,\beta)$.

Theorem (Gitik-J.)

Let κ be an inaccessible cardinal. Assume \vec{U} as above is coherent, and for $\nu < \kappa$, $\{\alpha \mid \circ(\alpha) \ge \nu\}$ is stationary. Then there is a forcing which adds a club subset of κ containing V-regular cardinals, preserves all cardinals, preserves cofinalities of regular cardinals outside the club, and preserves inaccessibility of κ .

- 4 回 ト 4 ヨ ト 4 ヨ ト

A naive attempt (almost works, but not quite)

・ロト ・四ト ・ヨト ・ヨト

12

A naive attempt (almost works, but not quite)

• For $\alpha < \kappa$, P_{α} has two blocks $p_0 \frown p_1$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3

A naive attempt (almost works, but not quite)

- For $\alpha < \kappa$, P_{α} has two blocks $p_0 \frown p_1$.
- p₁ is trivial (◦(α) = 0), Prikry forcing (◦(α) = 1), or a Magidor forcing (◦(α) > 1).

(人間) トイヨト イヨト ニヨ

A naive attempt (almost works, but not quite)

- For $\alpha < \kappa$, P_{α} has two blocks $p_0 \frown p_1$.
- *p*₁ is trivial (◦(α) = 0), Prikry forcing (◦(α) = 1), or a Magidor forcing (◦(α) > 1).
- if exists, p₀ ∈ P_β for some β < α. It composes of finite blocks of Prikry forcings or Magidor forcings.

(人間) トイヨト イヨト ニヨ

A naive attempt (almost works, but not quite)

- For $\alpha < \kappa$, P_{α} has two blocks $p_0 \frown p_1$.
- *p*₁ is trivial (◦(α) = 0), Prikry forcing (◦(α) = 1), or a Magidor forcing (◦(α) > 1).
- if exists, p₀ ∈ P_β for some β < α. It composes of finite blocks of Prikry forcings or Magidor forcings.
- The forcing P_{α} adds $C \cup \{\alpha\}$ where C is a club below α , singularize α to have cofinality cf $(\omega^{\circ(\alpha)})$.

(人間) トイヨト イヨト ニヨ

A naive attempt (almost works, but not quite)

- For $\alpha < \kappa$, P_{α} has two blocks $p_0 \frown p_1$.
- p₁ is trivial (◦(α) = 0), Prikry forcing (◦(α) = 1), or a Magidor forcing (◦(α) > 1).
- if exists, p₀ ∈ P_β for some β < α. It composes of finite blocks of Prikry forcings or Magidor forcings.
- The forcing P_{α} adds $C \cup \{\alpha\}$ where C is a club below α , singularize α to have cofinality cf $(\omega^{\circ(\alpha)})$.
- $\mathbb{P}_{\kappa} = \bigcup_{\alpha < \kappa} P_{\alpha}$, where $p \leq q$ if for some α , $p \upharpoonright P_{\alpha} \leq_{P_{\alpha}} q$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A naive attempt (almost works, but not quite)

- For $\alpha < \kappa$, P_{α} has two blocks $p_0 \frown p_1$.
- *p*₁ is trivial (◦(α) = 0), Prikry forcing (◦(α) = 1), or a Magidor forcing (◦(α) > 1).
- if exists, p₀ ∈ P_β for some β < α. It composes of finite blocks of Prikry forcings or Magidor forcings.
- The forcing P_{α} adds $C \cup \{\alpha\}$ where C is a club below α , singularize α to have cofinality cf $(\omega^{\circ(\alpha)})$.
- $\mathbb{P}_{\kappa} = \cup_{\alpha < \kappa} P_{\alpha}$, where $p \leq q$ if for some α , $p \upharpoonright P_{\alpha} \leq_{P_{\alpha}} q$.
- The forcing P_{α} is a Prikry-type forcing, and nice. However, \mathbb{P}_{κ} is no longer of Prikry-type.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Redefine P_{α} : $\circ(\alpha) = 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Redefine P_{α} : $\circ(\alpha) = 1$.

• A simplest condition in P_{α} is $p = \langle \alpha, A, F, H \rangle$, where $A \in U(\alpha, 0)$

イロト 不得 トイヨト イヨト 二日

Redefine P_{α} : $\circ(\alpha) = 1$.

• A simplest condition in P_{α} is $p = \langle \alpha, A, F, H \rangle$, where $A \in U(\alpha, 0)$, dom(F) = dom(H) = A, for $\gamma \in A$, $\Vdash_{P_{\gamma}}$ " $\gamma \leq F(\gamma) < \alpha$ ",

- 本間下 本臣下 本臣下 三臣

Redefine P_{α} : $\circ(\alpha) = 1$.

- A simplest condition in P_{α} is $p = \langle \alpha, A, F, H \rangle$, where $A \in U(\alpha, 0)$, $\operatorname{dom}(F) = \operatorname{dom}(H) = A$, for $\gamma \in A$, $\Vdash_{P_{\gamma}} "\gamma \leq F(\gamma) < \alpha"$, and $\Vdash_{P_{\gamma}} "H(\gamma) \in \dot{P}_{F(\gamma)}/P_{\gamma}"$.
- The one-step extension using $\gamma \in A$

<日

<</p>

Redefine P_{α} : $\circ(\alpha) = 1$.

- A simplest condition in P_{α} is $p = \langle \alpha, A, F, H \rangle$, where $A \in U(\alpha, 0)$, dom(F) = dom(H) = A, for $\gamma \in A$, $\Vdash_{P_{\gamma}}$ " $\gamma \leq F(\gamma) < \alpha$ ", and $\Vdash_{P_{\gamma}}$ " $H(\gamma) \in \dot{P}_{F(\gamma)}/P_{\gamma}$ ".
- The one-step extension using $\gamma \in A$ is $\langle \gamma \rangle^{\frown} \langle F(\gamma), H(\gamma) \rangle^{\frown} \langle \alpha, A \setminus \gamma + 1, F \upharpoonright (A \setminus \gamma + 1), H \upharpoonright (A \setminus \gamma + 1) \rangle$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Redefine P_{α} : $\circ(\alpha) = 1$.

- A simplest condition in P_{α} is $p = \langle \alpha, A, F, H \rangle$, where $A \in U(\alpha, 0)$, dom(F) = dom(H) = A, for $\gamma \in A$, $\Vdash_{P_{\gamma}}$ " $\gamma \leq F(\gamma) < \alpha$ ", and $\Vdash_{P_{\gamma}}$ " $H(\gamma) \in \dot{P}_{F(\gamma)}/P_{\gamma}$ ".
- The one-step extension using $\gamma \in A$ is $\langle \gamma \rangle^{\frown} \langle F(\gamma), H(\gamma) \rangle^{\frown} \langle \alpha, A \setminus \gamma + 1, F \upharpoonright (A \setminus \gamma + 1), H \upharpoonright (A \setminus \gamma + 1) \rangle$.
- For

 (α) > 1, the process is similar, except that when we perform a one-step extension, there is some reflection.
- Define $\mathbb{P}_{\kappa} = \bigcup_{\alpha < \kappa} P_{\alpha}$ and the ordering is as before.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma (Key lemma)

For $\nu < \kappa$ and $f : \nu \to ON$, $f \in V[G]$, there is $\alpha < \kappa$ such that $f \in V[G \upharpoonright P_{\alpha}]$.

< □ > < 同 > < 回 > < 回 > < 回 >

3

Lemma (Key lemma)

For $\nu < \kappa$ and $f : \nu \to ON$, $f \in V[G]$, there is $\alpha < \kappa$ such that $f \in V[G \upharpoonright P_{\alpha}]$.

• Build a suitable model M, $\circ(M \cap \kappa) = \nu$, say $\alpha = M \cap \kappa$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lemma (Key lemma)

For $\nu < \kappa$ and $f : \nu \to ON$, $f \in V[G]$, there is $\alpha < \kappa$ such that $f \in V[G \upharpoonright P_{\alpha}]$.

- Build a suitable model M, $\circ(M \cap \kappa) = \nu$, say $\alpha = M \cap \kappa$.
- Let $A \in \bigcap_{\beta < \circ(\alpha)} U(\alpha, \beta)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lemma (Key lemma)

For $\nu < \kappa$ and $f : \nu \to ON$, $f \in V[G]$, there is $\alpha < \kappa$ such that $f \in V[G \upharpoonright P_{\alpha}]$.

- Build a suitable model M, $\circ(M \cap \kappa) = \nu$, say $\alpha = M \cap \kappa$.
- Let $A \in \bigcap_{\beta < \circ(\alpha)} U(\alpha, \beta)$.
- Aim to build $\langle \alpha, A, F, H \rangle$.

< 同 > < 三 > < 三 >

Lemma (Key lemma)

For $\nu < \kappa$ and $f : \nu \to ON$, $f \in V[G]$, there is $\alpha < \kappa$ such that $f \in V[G \upharpoonright P_{\alpha}]$.

- Build a suitable model M, ◦(M ∩ κ) = ν, say α = M ∩ κ.
- Let $A \in \bigcap_{\beta < \circ(\alpha)} U(\alpha, \beta)$.
- Aim to build $\langle \alpha, A, F, H \rangle$.
- For $\gamma \in A$ with $\circ(\gamma) = 0$, let G be P_{γ} -generic containing $\langle \gamma \rangle$. Find $q \in \mathbb{P}_{\kappa}/G$ such that q decides $\dot{f}(0)$.

< 同 > < 三 > < 三 >

Lemma (Key lemma)

For $\nu < \kappa$ and $f : \nu \to ON$, $f \in V[G]$, there is $\alpha < \kappa$ such that $f \in V[G \upharpoonright P_{\alpha}]$.

- Build a suitable model M, ◦(M ∩ κ) = ν, say α = M ∩ κ.
- Let $A \in \bigcap_{\beta < \circ(\alpha)} U(\alpha, \beta)$.
- Aim to build $\langle \alpha, A, F, H \rangle$.
- For $\gamma \in A$ with $\circ(\gamma) = 0$, let G be P_{γ} -generic containing $\langle \gamma \rangle$. Find $q \in \mathbb{P}_{\kappa}/G$ such that q decides $\dot{f}(0)$.
- By elementarity, find q ∈ M[G]. Say q ∈ P_ξ/G, γ ≤ ξ < M ∩ κ = α. Let q̇ and F(γ) be P_γ-names for such q and ξ. Set H(γ) = q̇.

・ 何 ト ・ ヨ ト ・ ヨ ト

Lemma (Key lemma)

For $\nu < \kappa$ and $f : \nu \to ON$, $f \in V[G]$, there is $\alpha < \kappa$ such that $f \in V[G \upharpoonright P_{\alpha}]$.

- Build a suitable model M, ◦(M ∩ κ) = ν, say α = M ∩ κ.
- Let $A \in \bigcap_{\beta < \circ(\alpha)} U(\alpha, \beta)$.
- Aim to build $\langle \alpha, A, F, H \rangle$.
- For $\gamma \in A$ with $\circ(\gamma) = 0$, let G be P_{γ} -generic containing $\langle \gamma \rangle$. Find $q \in \mathbb{P}_{\kappa}/G$ such that q decides $\dot{f}(0)$.
- By elementarity, find q ∈ M[G]. Say q ∈ Pξ/G, γ ≤ ξ < M ∩ κ = α. Let q and F(γ) be Pγ-names for such q and ξ. Set H(γ) = q.
- For any β < ◦(α): each γ with ◦(γ) = β, find an associated q deciding f(β). Then forcing with ⟨α, A, F, H⟩ already decides f, so f[G] ∈ V[G ↾ P_α].

Thank you!

Sittinon Jirattikansakul (Tel Aviv University, Adding a club of former regulars to an inacceSETTOP 202223rd August, 2022 🧼 10 / 10

イロト イヨト イヨト イヨト

3