Applications of the open dihypergraph dichotomy for generalized Baire spaces

Dorottya Sziráki

SETTOP 2022 Novi Sad Based on a joint project with Philipp Schlicht.

 Philipp Schlicht, Dorottya Sziráki: The open dihypergraph dichotomy for generalized Baire spaces, 97 pages, in preparation. Theorem (Ramsey): Every infinite graph has an infinite clique or anticlique.

Can "infinite" be replaced by "uncountable"?

- Sierpinski's counterexample (1937): a graph on \mathbb{R} with no uncountable cliques or anticliques.
- Galvin (1968): Ramsey's theorem holds for all clopen graphs on ℝ; in fact, there is a perfect clique or anticlique for all such graphs.
- Blass (1981): A generalization to Borel *n*-hypergraphs.

The open graph dichotomy

An open graph is an open subset of $X \times X$ which is symmetric and irreflexive.

Definition (Feng, Todorčević)

 $OGD_{\omega}(X)$ states that for any open graph G on X, either

- G has a perfect clique, or
- G has an ω -coloring.

3/20

An open graph is an open subset of $X \times X$ which is symmetric and irreflexive.

Definition (Feng, Todorčević)

 $OGD_{\omega}(X)$ states that for any open graph G on X, either

- G has a perfect clique, or
- G has an ω -coloring.

Theorem (Feng 1993)

 $OGD_{\omega}(X)$ holds for analytic subsets of ${}^{\omega}\omega$. In Solovay's model, it holds for all subsets of ${}^{\omega}\omega$.

An open graph is an open subset of $X \times X$ which is symmetric and irreflexive.

Definition (Feng, Todorčević)

 $OGD_{\omega}(X)$ states that for any open graph G on X, either

- G has a perfect clique, or
- G has an ω -coloring.

Theorem (Feng 1993)

 $OGD_{\omega}(X)$ holds for analytic subsets of ${}^{\omega}\omega$. In Solovay's model, it holds for all subsets of ${}^{\omega}\omega$.

 $OGD_{\omega}(X)$ implies the perfect set property for X: either X is countable or X has a perfect subset.

- Recently, dichotomies for graphs and dihypergraphs have emerged which imply several old and new theorems in descriptive set theory.
- Carroy, Miller and Soukup (2020) found such an infinite dimensional version of the open graph dichotomy.
- A κ -dihypergraph on X is a set of nonconstant sequences in κX .

4/20

A high dimensional version

We fix the box topology on ${}^{\omega}X$ with basic open sets $\prod_{i < \omega} U_i$, where each U_i is open in X.

Definition (Carroy, Miller, Soukup 2020)

 $ODD_{\omega}^{\omega}(X)$: for any box-open ω -dihypergraph H on X, either

- *H* has an ω -coloring,
- or *H* contains a "large" dihyperpgraph.

5/20

A high dimensional version

We fix the box topology on ${}^{\omega}X$ with basic open sets $\prod_{i < \omega} U_i$, where each U_i is open in X.

Definition (Carroy, Miller, Soukup 2020) $ODD_{\omega}^{\omega}(X)$: for any box-open ω -dihypergraph H on X, either • H has an ω -coloring, • or there is a continuous homomorphism from $\mathbb{H}_{\omega_{\omega}}$ to H. $\mathbb{H}_{\omega_{\omega}} = \{\overline{x} \in {}^{\omega}({}^{\omega}\omega) : \exists t \in {}^{<\omega}\omega \ \forall i \in \omega \ t^{\frown}\langle i \rangle \subseteq x_i\}$

A high dimensional version

We fix the box topology on ${}^{\omega}X$ with basic open sets $\prod_{i<\omega}U_i$, where each U_i is open in X.

Fact: $ODD_{\omega}^{\omega}(X)$ implies the open graph dichotomy $OGD_{\omega}(X)$.

Theorem (Carroy, Miller, Soukup 2020)

• $ODD_{\omega}^{\omega}(X)$ holds for analytic subsets X of $^{\omega}\omega$.

• Assuming AD, it holds for all subsets of $\omega \omega$.

6/20

Theorem (Carroy, Miller, Soukup 2020)

For any family Γ of subsets of ${}^{\omega}\omega$, $ODD_{\omega}^{\omega}(\Gamma)$ implies:

- the Hurewicz dichotomy: any X ∈ Γ either contains a closed homeomorphic copy of^ωω or is contained in a K_σ set;
- the Kechris-Louveau-Woodin dichotomy on separating subsets in Γ from arbitrary subsets by an F_σ set;
- the Jayne-Rogers theorem on piecewise continuous functions f with closed pieces such that $dom(f) \in \Gamma$.

 κ always denotes an uncountable cardinal with $\kappa^{<\kappa} = \kappa$.

Definitions are analogous:

The κ-Baire space ^κκ is the set of functions f : κ → κ, with the bounded topology: basic open sets are

$$N_s = \{ x \in {}^{\kappa}\kappa : s \subset x \} \qquad \text{for all } s \in {}^{<\kappa}\kappa.$$

- The κ -Cantor space κ^2 has the subspace topology.
- κ-Borel sets are generated from open sets by closing under intersections and unions of size κ and complementation.

It is consistent relative to an inaccessible cardinal that analogues of

 the perfect set property and the Hurewicz dichotomy hold for definable subsets of ^κκ (Schlicht 2017; Lücke, Motto–Ros, Schlicht);

By definable, we always mean definable from a parameter in $^{\kappa}$ Ord.

• the open graph dichotomy holds for κ -analytic subsets of $\kappa \kappa$ (Sz. 2018).

A κ -analytic set is a continuous image of a closed subset.

Definition $ODD_{\kappa}^{\kappa}(X)$: for any box-open κ -dihypergraph H on X, either

- H has a κ -coloring,
- or there is a continuous homomorphism $f: {}^{\kappa}\kappa \to X$ from $\mathbb{H}_{{}^{\kappa}\kappa}$ to H.

$$\mathbb{H}_{\kappa_{\kappa}} = \left\{ \overline{x} \in {}^{\kappa}({}^{\kappa}\kappa) : \exists t \in {}^{<\kappa}\kappa \; \forall i \in \kappa \; t^{\frown}\langle i \rangle \subseteq x_i \right\}$$

$$x_i$$

 $ODD_{\kappa}^{\kappa}(X, H)$ states that this holds for H.

ODD for definable subsets

By definable, we always mean definable from a parameter in $^{\kappa}$ Ord.

Theorem (Schlicht, Sz. 2021)

After a Lévy-collapse of λ to κ^+ , for all definable subsets X of $\kappa \kappa$:

• $ODD_{\kappa}^{\kappa}(X)$ holds if λ is Mahlo in the ground model,

By definable, we always mean definable from a parameter in $^{\kappa}$ Ord.

Theorem (Schlicht, Sz. 2021)

After a Lévy-collapse of λ to κ^+ , for all definable subsets X of $\kappa \kappa$:

• $ODD_{\kappa}^{\kappa}(X)$ holds if λ is Mahlo in the ground model,

i.e., $ODD_{\kappa}^{\kappa}(X, H)$ holds for all box-open κ -dihypergraphs H on X;

By definable, we always mean definable from a parameter in $^{\kappa}$ Ord.

Theorem (Schlicht, Sz. 2021)

After a Lévy-collapse of λ to κ^+ , for all definable subsets X of $\kappa \kappa$:

- ODD^κ_κ(X) holds if λ is Mahlo in the ground model,
 i.e., ODD^κ_κ(X, H) holds for all box-open κ-dihypergraphs H on X;
- $ODD_{\kappa}^{\kappa}(X, H)$ holds for all definable box-open κ -dihypergraphs H on X if λ is inaccessible in the ground model.

By definable, we always mean definable from a parameter in $^{\kappa}$ Ord.

Theorem (Schlicht, Sz. 2021)

After a Lévy-collapse of λ to κ^+ , for all definable subsets X of $\kappa \kappa$:

- ODD^κ_κ(X) holds if λ is Mahlo in the ground model,
 i.e., ODD^κ_κ(X, H) holds for all box-open κ-dihypergraphs H on X;
- $ODD_{\kappa}^{\kappa}(X, H)$ holds for all definable box-open κ -dihypergraphs H on X if λ is inaccessible in the ground model.

A simplified version of the proof works for ω . So in Solovay's model, $ODD_{\omega}^{\omega}(X)$ holds for all $X \subseteq {}^{\omega}\omega$.

All the applications of Carroy-Miller-Soukup for definable subsets of ${}^{\omega}\omega$ are consistent relative to an inaccessible or Mahlo cardinal.

All the applications of Carroy-Miller-Soukup for definable subsets of ${}^{\omega}\omega$ are consistent relative to an inaccessible or Mahlo cardinal.

New proof of the consistency of the perfect set property and the open graph dichotomy for definable subsets of $\kappa \kappa$.

For any family Γ of subsets of $\kappa \kappa$, $ODD_{\kappa}^{\kappa}(\Gamma)$ implies analogues of:

- the Hurewicz dichotomy: any X ∈ Γ either contains a closed homeomorphic copy of ^κκ or is contained in a union of κ many κ-compact sets;
- other versions of the Hurewicz dichotomy;

For any family Γ of subsets of $\kappa \kappa$, $ODD_{\kappa}^{\kappa}(\Gamma)$ implies analogues of:

- the Hurewicz dichotomy: any X ∈ Γ either contains a closed homeomorphic copy of ^κκ or is contained in a union of κ many κ-compact sets;
- other versions of the Hurewicz dichotomy;
- the Kechris-Louveau-Woodin dichotomy: characterizes when subsets in Γ can be separated from arbitrary subsets by a Σ₂⁰(κ) set;

For any family Γ of subsets of $\kappa \kappa$, $ODD_{\kappa}^{\kappa}(\Gamma)$ implies analogues of:

- the Hurewicz dichotomy: any X ∈ Γ either contains a closed homeomorphic copy of ^κκ or is contained in a union of κ many κ-compact sets;
- other versions of the Hurewicz dichotomy;
- the Kechris-Louveau-Woodin dichotomy: characterizes when subsets in Γ can be separated from arbitrary subsets by a Σ₂⁰(κ) set;
- the Jayne-Rogers theorem on piecewise continuous functions f with closed pieces such that $dom(f) \in \Gamma$.

The analogues of Hurewicz dichotomy and the Jayne-Rogers theorem already follow from a definable version of $ODD_{\kappa}^{\kappa}(\Gamma)$:

 $ODD_{\kappa}^{\kappa}(X, H \upharpoonright X)$ holds for all definable box-open κ -dihypergraphs H on ${}^{\kappa}\kappa$.

Hence these are these are consistent for definable subsets of $\kappa \kappa$ relative to an inaccessible cardinal $\lambda > \kappa$.

The Kechris-Louveau-Woodin dichotomy for definable subsets of ${}^{\kappa}\kappa$ is consistent relative to a Mahlo cardinal $\lambda > \kappa$.

The analogues of Hurewicz dichotomy and the Jayne-Rogers theorem already follow from a definable version of $ODD_{\kappa}^{\kappa}(\Gamma)$:

 $ODD_{\kappa}^{\kappa}(X, H \upharpoonright X)$ holds for all definable box-open κ -dihypergraphs H on ${}^{\kappa}\kappa$.

Hence these are these are consistent for definable subsets of $\kappa \kappa$ relative to an inaccessible cardinal $\lambda > \kappa$.

The Kechris-Louveau-Woodin dichotomy for definable subsets of ${}^{\kappa}\kappa$ is consistent relative to a Mahlo cardinal $\lambda > \kappa$.

The analogues of Hurewicz dichotomy and the Jayne-Rogers theorem already follow from a definable version of $ODD_{\kappa}^{\kappa}(\Gamma)$:

 $ODD_{\kappa}^{\kappa}(X, H \upharpoonright X)$ holds for all definable box-open κ -dihypergraphs H on ${}^{\kappa}\kappa$.

Hence these are these are consistent for definable subsets of $\kappa \kappa$ relative to an inaccessible cardinal $\lambda > \kappa$.

The Kechris-Louveau-Woodin dichotomy for definable subsets of ${}^{\kappa}\kappa$ is consistent relative to a Mahlo cardinal $\lambda > \kappa$.

Applications: Assymetric Baire property

Definition: $X \subseteq {}^{\kappa}\kappa$ has the κ -Baire property if there is an open set $U \subseteq {}^{\kappa}\kappa$ such that $X \bigtriangleup U$ is κ -meager.

The κ -Baire property fails for some κ -analytic subset of $\kappa \kappa$ (Halko, Shelah).

Applications: Assymetric Baire property

Definition: $X \subseteq {}^{\kappa}\kappa$ has the κ -Baire property if there is an open set $U \subseteq {}^{\kappa}\kappa$ such that $X \bigtriangleup U$ is κ -meager.

The κ -Baire property fails for some κ -analytic subset of $\kappa \kappa$ (Halko, Shelah).

Definition: X has the asymmetric Baire property if the the Banach-Mazur game of length κ for X is determined.

In this game, players I and II play a strictly increasing sequence $\langle s_{\alpha} : \alpha < \kappa \rangle$ in ${}^{<\kappa}\kappa$. I plays in all even rounds (including limit rounds). I wins if $\bigcup_{\alpha < \kappa} s_{\alpha} \in X$.

Applications: Assymetric Baire property

Definition: $X \subseteq {}^{\kappa}\kappa$ has the κ -Baire property if there is an open set $U \subseteq {}^{\kappa}\kappa$ such that $X \bigtriangleup U$ is κ -meager.

The κ -Baire property fails for some κ -analytic subset of $\kappa \kappa$ (Halko, Shelah).

Definition: X has the asymmetric Baire property if the the Banach-Mazur game of length κ for X is determined.

In this game, players I and II play a strictly increasing sequence $\langle s_{\alpha} : \alpha < \kappa \rangle$ in $^{<\kappa}\kappa$. I plays in all even rounds (including limit rounds). I wins if $\bigcup_{\alpha < \kappa} s_{\alpha} \in X$.

- κ -Baire-property \Rightarrow asymmetric Baire property for subsets of $\kappa \kappa$.
- The two properties are equivalent for ω .

- The definable version of ODD^κ_κ(X) implies the asymmetric Baire property for X ⊆ ^κκ.
- For ω instead of κ , it implies the Baire property.

- The definable version of ODD^κ_κ(X) implies the asymmetric Baire property for X ⊆ ^κκ.
- For ω instead of κ , it implies the Baire property.

New proof of the consistency of

- the asymmetric Baire property for definable subsets of ^κκ (Schlicht 2017);
- the Baire property for definable subsets of ${}^{\omega}\omega$ (Solovay 1970).

16/20

By Cantor-Bendixson analysis, any topological space can be decomposed into a scattered subset and a crowded subset by iteratively removing isolated points. If the space has a countable base, then the scattered part is countable.

Väänänen adapted this to subsets $X \subseteq {}^{\kappa}\kappa$ via a game $\mathcal{G}_{\kappa}(X, x)$ of length κ .

Väänänen's perfect set game

Definition (Väänänen 1991)

The game $\mathcal{G}_{\kappa}(X,x)$ of length κ for subsets X of ${}^{\kappa}\kappa$ is played as follows:

I plays a strictly decreasing sequence $\langle U_{\alpha} : 1 \leq \alpha < \kappa \rangle$ of open subsets of X so that $x_{\beta} \in U_{\beta+1}$ if $\beta + 1 < \kappa$ and $U_{\alpha} = \bigcap_{\beta < \alpha} U_{\beta}$ in limit rounds α .

II plays an injective sequence $\langle x_{\alpha} : \alpha < \kappa \rangle$ with $x_0 = x$ and $x_{\alpha} \in U_{\alpha}$.

I U_1 ... U_{α} ... **II** $x_0 = x$ x_1 ... x_{α} ...

Each player loses immediately if they do not follow these rules. If both follow the rules in all rounds, then II wins.

- X is κ -scattered : \Leftrightarrow I wins $\mathcal{G}_{\kappa}(X, x)$ for all $x \in X$.
- X is κ -crowded : \Leftrightarrow II wins $\mathcal{G}_{\kappa}(X, x)$ for all $x \in X$

 $\Leftrightarrow {\sf the \ closure \ of} \ X \ {\sf is} \ \kappa {\sf -perfect}.$

Applications: Väänänen's perfect set game

 $\mathcal{G}_{\omega}(X,x)$ is determined, but $\mathcal{G}_{\kappa}(X,x)$ may not be for $\kappa > \omega$.

Applications: Väänänen's perfect set game

 $\mathcal{G}_{\omega}(X,x)$ is determined, but $\mathcal{G}_{\kappa}(X,x)$ may not be for $\kappa > \omega$.

Theorem (Schlicht, Sz. 2022)

 $ODD_{\kappa}^{\kappa}(\kappa \kappa)$ implies that all subsets of $\kappa \kappa$ can be decomposed into a κ -scattered subset of size $\leq \kappa$ and a κ -crowded subset.

In particular, $\mathcal{G}_{\kappa}(X, x)$ is determined for all $X \subseteq {}^{\kappa}\kappa$ and $x \in X$.

Applications: Väänänen's perfect set game

 $\mathcal{G}_{\omega}(X,x)$ is determined, but $\mathcal{G}_{\kappa}(X,x)$ may not be for $\kappa > \omega$.

Theorem (Schlicht, Sz. 2022)

 $ODD_{\kappa}^{\kappa}(\kappa \kappa)$ implies that all subsets of $\kappa \kappa$ can be decomposed into a κ -scattered subset of size $\leq \kappa$ and a κ -crowded subset.

In particular, $\mathcal{G}_{\kappa}(X, x)$ is determined for all $X \subseteq {}^{\kappa}\kappa$ and $x \in X$.

Hence this property for all subsets of $\kappa \kappa$ is consistent relative to a Mahlo cardinal.

This strenghtens Väänänen's result (1991) on the consistency of this property for closed subsets relative to a measurable cardinal.

Thank you!