▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

On ordered meet trees

Predrag Tanović

Mathematical Institute SANU, Belgrade

SETTOP 2022

Meet-trees

Definition

- A meet tree is a partal order (M, \triangleleft) in which
- (1) predecessors of any element form a chain, and
- (2) every pair of elements $x, y \in M$ has infimum, denoted by $x \wedge y$.
- A colored (meet) tree has (arbitrary) unary predicates added.

 (M, \sphericalangle) and (M, \land) are interdefinable structures; (M, \land) is also called a meet tree.

Meet-trees

Definition

A meet tree is a partal order (M, \triangleleft) in which

(1) predecessors of any element form a chain, and

(2) every pair of elements $x, y \in M$ has infimum, denoted by $x \wedge y$.

A colored (meet) tree has (arbitrary) unary predicates added.

 (M, \triangleleft) and (M, \land) are interdefinable structures; (M, \land) is also called a meet tree.

- $C(a) = \{x \in M \mid a \leq x\}$ is a closed cone centered at a;
- a ⊲ x ∧ y defines an equivalence relation on C(a) ∖ {a}; the classes are called *open cones* centered at a and C_a(x) denotes the class of x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

An ordered tree is a structure $(M, \land, <)$ satisfying:

- (1) (M, \wedge) is a meet tree,
- (2) < extends \lhd and linearly orders M, and
- (3) All (closed) cones are <-convex $(x, y \in C \text{ implies } [x, y] \subseteq C)$.

A *cor-tree* is a colored ordered tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problems

1. "Geometric" description of definable sets

Which easy-to-visualize definable relations should be added to a colored tree (cor-tree) so that it eliminates quantifiers?

Problems

1. "Geometric" description of definable sets

Which easy-to-visualize definable relations should be added to a colored tree (cor-tree) so that it eliminates quantifiers?

2. Classification of countable models

For a countable, complete theory T (of colored trees or cor-trees) with $I(T,\aleph_0) < 2^{\aleph_0}$ find a system of invariants which determines countable models of T up to an isomorphism.

Problems

1. "Geometric" description of definable sets

Which easy-to-visualize definable relations should be added to a colored tree (cor-tree) so that it eliminates quantifiers?

2. Classification of countable models

For a countable, complete theory T (of colored trees or cor-trees) with $I(T,\aleph_0) < 2^{\aleph_0}$ find a system of invariants which determines countable models of T up to an isomorphism.

3. The number of countable models

Prove that an $\mathcal{L}_{\omega_1,\omega}$ -sentence in the language of cor-trees has either $\leq \aleph_0$ or perfectly many countable models.

The case of linear orders

• Rubin 1973. Theories of linear order.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The case of linear orders

• Rubin 1973. Theories of linear order.

Fact

Let (M, <) be a linear order and $f : M \to M$ a definable function. Then there is a definable decomposition $M = D_1 \cup ... \cup D_n$ such that each $f \upharpoonright D_i$ is increasing. "Geometric" description of colored orders:

Theorem (Ilić, Moconja, T. 2017.)

If in a colored order we name:

- all definable unary predicates;
- ② all definable convex equivalence relations E;
- Solution 3 all relations x ≤ Sⁿ_E(y) (where Sⁿ_E(y) is the *n*-th successor E-class of [y]_E, E is definable, convex and n ∈ ω);

then the obtained structure eliminates quantifiers.

Colored trees

Theorem (Simon 2011.)

Let $\mathfrak{M} = (M, \wedge, ...)$ be a colored tree

(a) If $\bar{a} = (a_1, ..., a_n)$ a subtree, then $tp_{\bar{X}}(\bar{a})$ is determined by:

• \wedge -atomic diagram of \bar{a}

• all $tp_{x_ix_j}(a_ia_j)$ where a_i and a_j are \lhd -consecutive in \bar{a} . (b) The theory $T = Th(\mathcal{M})$ is ternary: every formula is T-equivalent to a Boolean combination of formulas with at most three free variables.

Theorem (Simon 2011.)

Colored trees are dp-minimal: there do NOT exist a colored tree (M,...), $m, n \in \mathbb{N}$, sequences $(\bar{a}_i \mid i \in \omega)$ of *n*-tuples and $(\bar{b}_j \mid j \in \omega)$ of *m*-tuples of elements of *M*, formulas $\pi_1(x, \bar{y})$ and $\pi_2(x, \bar{z})$, and elements $c_{ij} \in M$ $(i, j < \omega)$ such that for all $i, j, k \in \omega$:

$$M \models \pi_1(c_{ij}, \bar{a}_k)$$
 iff $i = k$, and

$$M \models \pi_2(c_{ij}, \bar{b}_k)$$
 iff $j = k$.

Colored ordered trees

Theorem

Let
$$\mathfrak{M} = (M, \wedge, <, ...)$$
 be a cor-tree.

(a) If $\bar{a} = (a_1, ..., a_n)$ a subtree, then $tp_{\bar{x}}(\bar{a})$ is determined by:

- ^-atomic diagram of ā;
- the <-ordering of \bar{a} ;

• all $tp_{x_ix_i}(a_ia_j)$ where a_i and a_j are <-consecutive in \bar{a} .

(b) The theory $T = Th(\mathcal{M})$ is ternary.

(c) $Th(\mathcal{M})$ is dp-minimal.

(d) If *E* a definable equivalencce relation on \mathcal{M} , then there is a definable partition $M = D_1 \cup ... \cup D_n$ such that *E* is \triangleleft -convex on each D_i .

Theorem (Moconja, T. 2020.)

T-countable, binary, stationarily ordered theory.

- $I(\aleph_0, T) = 2^{\aleph_0}$ provided that at least one of the following conditions holds:
 - T is not small;
 - there is a non-convex type $p \in S_1(T)$;
 - If there is a non-simple type $p \in S_1(T)$;
 - there are infinitely many ∠^w-classes of non-isolated types in S₁(T);
 - () there is a non-isolated forking extension of some $p \in S_1(T)$ over an 1-element domain.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- I(ℵ₀, T) = ℵ₀ iff none of the above holds and there are infinitely many ∠^f-classes of non-isolated types in S₁(T);
- If none of the above holds, then:

$$I(\aleph_0, T) = \prod_{i \in w_T \smallsetminus u} (|\alpha_i^{\mathcal{F}}| + 2) \cdot \prod_{j \in u} (|\alpha_j^{\mathcal{F}}|^2 + 3|\alpha_j^{\mathcal{F}}| + 2)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

THANK YOU !!!