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the goal

The focus of this talk will be the recent work

A descriptive approach to higher derived limits,

joint with Nathaniel Bannister, Justin Tatch Moore, and Stevo
Todorcevic (arXiv 2022).

Although this isn’t a particularly simple work, its idea and
motivation, I think, are, and it’s these that I’ll aim above all to
communicate in the next hour.
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Here’s my plan:
1 Some of the prehistory (i.e., motivation) of this paper.
2 The simple idea: the partition principles PHn (n ∈ ω), and

their place in this history.
3 Some warm-up and practice with these principles in the

setting of the ordinals.
4 A simplicial perspective from which these principles really

are simple.
5 A return to ωω.
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in the beginning

In 1988, Mardešić and Prasolov posed the question of whether
strong homology H̄∗ is additive.

Let’s unpack these terms. First, additivity:

Definition (Milnor 1962)
A homology theory H∗ is additive on the class C of topological
spaces if for all p and {Xα | α ∈ A} ⊆ C with

∐
α∈AXα in C, the

map ⊕
α∈A

Hp(Xα)→ Hp(
∐
α∈A

Xα)

induced by the inclusions Xα ↪→
∐
α∈AXα is an isomorphism.

Second, strong homology:
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a sketch of the idea of strong homology
A homology theory, axiomatically understood, can behave in
only one way on the category of finite CW-complexes;
additivity determines its extension to the category HCW of
spaces having the homotopy type of (possibly infinite) CW
complexes.

Other considerations may arise when we endeavor
to extend it further. For example,

but it has its shape, in the sense that both these figures divide
the plane, and that their systems of neighborhoods are
structurally equivalent. Among the several virtues of strong
homology H̄∗ are its strong shape-invariance: it is the
pre-eminent homology theory with this feature which coincides
with the classical theories on HCW.
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meanings of the question

The additivity question, then, is one of whether strong
homology has additional classical and desirable properties; it is
even a question about the very compatibility of these properties
with shape-invariance on general classes of topological spaces.
Some care in the posing of these questions is necessary, due to a
nonmetrizable ZFC counterexample to additivity due to
Prasolov, dating to the late 90s — but the gap between that
example and the sorts of spaces we’ll be discussing is
substantial. In short, in more precise form, the question that
had remained open until quite recently was the following:

Can strong homology be additive on any robust class
of topological spaces properly extending HCW?

What Mardešić and Prasolov had noticed around 1988 was the
following fundamental impediment to additivity.
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What Mardešić and Prasolov had noticed around 1988 was the
following fundamental impediment to additivity.



Is strong homology additive?



the inverse system A

— i.e., necessary for the additivity of H̄∗ is the vanishing of the
limn (n > 0) groups of the system A = (Af , pfg,N ), where

N is the partial order (ωω,≤),
Af =

⊕
`(f) Z, where `(f) = {(i, j) ∈ ω2 | j ≤ f(i)}, and

pfg : Ag → Af is the projection map for each f ≤ g.

Observe that lim A may be identified with
{ϕ : ω × ω → Z | supp(ϕ) ∈ (fin ×∅)}.
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lim1 A

lim1 A admits the following characterization, also due to
Mardešić and Prasolov. Here F =∗ G if F is equal mod finite to
G on the intersection of their domains.

Definition
A family of functions Φ = {ϕf : `(f)→ Z | f ∈ ωω} is coherent
if

ϕg − ϕf =∗ 0

for all f and g in ωω. Φ is trivial if there exists a ϕ : ω × ω → Z
such that

ϕ− ϕf =∗ 0

for all f in ωω. Observe that pointwise addition endows both
the collection Coh of coherent families of functions and the
collection Triv of trivial families of functions with the structure
of a group. lim1 A is isomorphic to the quotient Coh/Triv.
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Mardešić and Prasolov.

Here F =∗ G if F is equal mod finite to
G on the intersection of their domains.

Definition
A family of functions Φ = {ϕf : `(f)→ Z | f ∈ ωω} is coherent
if

ϕg − ϕf =∗ 0

for all f and g in ωω. Φ is trivial if there exists a ϕ : ω × ω → Z
such that

ϕ− ϕf =∗ 0

for all f in ωω. Observe that pointwise addition endows both
the collection Coh of coherent families of functions and the
collection Triv of trivial families of functions with the structure
of a group. lim1 A is isomorphic to the quotient Coh/Triv.



lim1 A

lim1 A admits the following characterization, also due to
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lim1 A, assuming CH

By the above definition, lim1A = 0 if and only if every coherent
family of functions is trivial. Mardešić and Prasolov attribute
the observation

CH⇒ [there exists a nontrivial coherent family of functions]

to Petr Simon. The argument is routine, modulo the following
recognition:
Lemma
Let F ⊆ ωω be a <∗-cofinal family of functions. A coherent
family Φ is trivial if and only if its restriction to F is trivial.

Using the continuum hypothesis, then, fix an <∗-scale
F = 〈fα | α < ω1〉 and, working upwards through F , (cofinally)
define a coherent family of functions Φ which diagonalizes
against all the ℵ1 many possible trivializations of Φ. This shows
CH⇒ [lim1 A 6= 0].
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lim1 A under other assumptions

This work by Mardešić, Prasolov, and Simon cued a rapid
succession of results and refinements:

PFA⇒ [lim1 A = 0] (Dow, Simon, Vaughan 1988);
[d = ℵ1]⇒ [lim1 A 6= 0] (Dow, Simon, Vaughan 1988);
OCA⇒ [lim1 A = 0] (Todorcevic 1989);
Any ordertype-ω1 <

∗-increasing family of functions from ω
to ω indexes a nontrivial coherent family (Todorcevic 1991);
In the extension by a forcing to add at least ω2 many
Cohen reals, lim1 A = 0 (Kamo 1993);
MA(ω1) 6⇒ [lim1 A = 0] (Todorcevic 1998);
Any witness to lim1A 6= 0 is (in the natural topology) a
nonanalytic set whose intersection with any compact set is
Fσ (Todorcevic 1998).

These results remained the state of the art for roughly the next
twenty years. As we’ve seen, however, the additivity of strong
homology would require that limn A = 0 for all n > 0.
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lim2 A

Definition and Theorem
A family Φ = {ϕfg : `(f ∧ g)→ Z | f, g ∈ ωω} is alternating if
ϕfg = −ϕgf for all f, g ∈ ωω.

An alternating Φ as above is 2-coherent if

ϕfh − ϕgh =∗ ϕfg

for all f, g, h ∈ ωω.

Φ is 2-trivial if there exists a Ψ = {ψf : `(f)→ Z | f ∈ ωω}
such that

ψf − ψg =∗ ϕfg
for all f, g ∈ ωω.

lim2 A = 0 iff every 2-coherent family is 2-trivial.
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more recent results

Theorem (B. 2017)
The Proper Forcing Axiom implies that lim2 A 6= 0.

Theorem (B., Lambie-Hanson 2019)
Let κ be a weakly compact cardinal and let P denote a length-κ
finite-support iteration of Hechler forcings. Then

V P � “limn A = 0 for all n > 0.”

Theorem (Bannister, B., Moore 2020)
In the model V P appearing above, strong homology is additive
on the class of locally compact separable metric spaces.

Theorem (B., Hrušák, Lambie-Hanson 2021)
It is consistent with the ZFC axioms that 2ℵ0 = ℵω+1 and
limn A = 0 for all n > 0.
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Theorem (B., Hrušák, Lambie-Hanson 2021)
It is consistent with the ZFC axioms that 2ℵ0 = ℵω+1 and
limn A = 0 for all n > 0.



a factorization

Let’s note the outstanding remaining open question in this line:

Question
What is the minimum value of the continuum compatible with
the assertion “limn A = 0 for all n > 0”?

Write Ω for the quasi-order (ωω,≤∗). We turn our focus now to
a family of purely set-theoretic principles PHn(Ω) (n ∈ ω)
through which the above results factor in the following sense:

Theorem (Bannister, B., Moore, Todorcevic 2022)
Let V P be as above; then

V P � “PHn(Ω) for all n ∈ ω.”

Theorem (Bannister, B., Moore, Todorcevic 2022)
“PHn(Ω) for all n ∈ ω” implies that strong homology is additive
on the class of locally compact separable metric spaces.
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the principles in question

Notation (1)
Let Q be a quasi-order. For any n ≥ 1 let

Q≤n =
n⋃
i=1

Qi

and for any σ, τ ∈ Q≤n, write σ E τ if σ is a subsequence of τ .

Let
Q[n] = {σ ∈ Qn | i ≤ j ⇒ σ(i) ≤ σ(j)}

and let

Q[[n]] = {σ̄ ∈
n∏
i=1

Qi | i ≤ j ⇒ σ̄(i) E σ̄(j)}.
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the principles in question

Notation (2)
For any n ≥ 1, say a function F : Q≤n → Q is n-cofinal if

1 s ≤ F (s) for all s ∈ Q, and
2 σ E τ ⇒ F (σ) ≤ F (τ).

Observe that such a function induces an

F ∗ : Q[[n]] → Q[n]

given by

F ∗(σ̄) = F ∗ ◦ σ = 〈F (σ̄(i)) | 1 ≤ i ≤ n〉.

Observe also that if F : Q≤n → Q is n-cofinal and 1 ≤ m ≤ n
then F � Q≤m is m-cofinal.
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the principles in question

Definition
For any n ≥ 1 the partition hypothesis associated to Qn+1 is:

PHn(Q): For all c : Qn+1 → ω there is an
(n+ 1)-cofinal F : Q≤n+1 → Q such that c ◦ F ∗ is
constant.

Note that by our observations on the preceding slide, these
principles are monotonic in n; in other words,

PHn(Q)⇒ PHm(Q) for all 1 ≤ m ≤ n.
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PHn(ξ) for ξ an ordinal

Theorem
PHn(ωn) is false for every n ∈ ω.

Proof sketch.
The idea of the argument is this. We inductively define
colorings cn : (ωn)n+1 → ω which witness the failure of
PHn(ωn). Each essentially derives from a coloring
c̃n : [ωn]n+1 → ω defined as follows: for each γ ∈ ωn fix an
injection fγ : γ ↪→ ωn−1 and let

c̃n(~α, γ) = c̃n−1(fγ(α0), . . . , fγ(αn−1))

for any α0 < · · · < αn−1 < γ < ωn. Proving that for any
n-cofinal F : (ωn)≤n+1 → ωn the function cn ◦ F ∗ is nonconstant
is where things get interesting: the indispensible tools, as it
turned out, were simplicial homology, and a view of these
accumulating ~α ∗ γ relations as simplicial cones.
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PHn(ξ) for ξ an ordinal

Theorem
A countably complete, ℵ1-dense ideal I on ω2 ⇒ PH1(ω2).

Proof.
Fix a c : (ω2)2 → ω and I as above. We will define a 2-cofinal F
with c ◦ F ∗ constant. First, fix for each α ∈ ω2 an Aα ∈ I+ and
iα ∈ ω such that c(α, β) = iα for all β ∈ Aα. Since I is ℵ1-dense,
there exist B ∈ [ω2]ω2 and X ∈ I+ such that Aα ⊇ X (mod I)
for all α ∈ B. Fix i ∈ ω and C ∈ [B]ω2 with iα = i for all α ∈ C.
For each α ∈ ω2 let F (α) = minC\α and for α ≤ β in ω2 let

F (α, β) = min(AF (α) ∩AF (β)\F (α) ∪ F (β)).

Since both AF (α) and AF (β) contain X (mod I), this expression
is well-defined.
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PHn(ξ) for ξ an ordinal

It’s clear that PH1(ω2) entails some large cardinal assumptions:

Theorem
For all n > 0, if κ is regular and PHn(κ) holds then κ is weakly
compact in L.

Question
What is the consistency strength of PH1(ω2)? Or of PH2(ω3)?

Theorem
If there exist uniform ideals I and J on a cardinal κ satisfying
ℵ1 ≤ add(I),
dens(I+) < add(J ) ≤ κ, and
dens(J +) < κ,

then PH2(κ) holds.
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transmitting PHn

It’s worth observing that PHn isn’t just about the cardinal κ.

Lemma
If P and Q are directed quasi-orders and P → Q is a monotone
map with cofinal image, then PHn(P ) implies PHn(Q).

In particular, PHn(ξ) is equivalent to PHn(cf(ξ)). Hence:

Theorem
The partition hypothesis PHn(Ω) implies PHn(d). In particular,
it implies that cf(d) > ωn, and if n > 0, it further implies that
cf(d) is weakly compact in L. Hence for all n > 0 the
consistency strength of the principle PHn(Ω) is exactly a weakly
compact cardinal.

Proof idea.
If 〈fα | α < d〉 is ≤∗-cofinal in ωω, then f 7→ min{α | f ≤∗ fα} is
a monotone map Ω→ d with cofinal image.
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a seeming digression

A persistent recognition in the study of topology is of homology
theory, and even more particularly homotopy theory, as
fundamentally combinatorial in nature. A watershed (1967)
formalization of this recognition is the Quillen equivalence of
the standard homotopy theoretic, or more precisely, model
category structures on the category of topological spaces and
the category of simplicial sets. Please bear with me: I want to
talk a little while about the latter.
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simplicial sets

Definition
Write ∆ for the category of finite nonempty ordinals, whose
objects are (in these contexts) typically written [0] = {0},
[1] = {0, 1}, [n] = {0, . . . , n}, etc., and whose morphisms are
order-preserving maps f : [m]→ [n]. A simplicial set X is a
contravariant functor S : ∆→ Set; put differently, it is a
collection of sets S([n]) = Xn (whose elements are thought of as
the n-dimensional faces, or n-simplices, of X), for n ∈ ω,
together with morphisms S(f) : Xn → Xm (thought of as face
maps) whose relations mirror those among the morphisms in ∆.
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ordered simplicial complexes

Example
Let Y be your favorite ordered (abstract) simplicial complex —
i.e., Y is a totally ordered set of vertices V , together with a
downwards closed collection of finite subsets σ of V . Letting
Xn = {σ ∈ Y | |σ| = n+ 1} almost determines a simplicial set;
what’s missing are the “degenerate” faces of Y , those of the
form (1, 3, 3, 5) (if (1, 3, 5) ∈ Y ), etc. Adding these in defines the
simplicial set X associated to Y ; the structuring maps in X are
generated by face and coface maps I’ll probably prefer to
describe on the board. . . Let’s recall also, while I’m there, the
notion of the subdivision of an abstract simplicial complex.
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realization and homotopy

Like simplicial complexes, simplicial sets admit geometric
realizations — in fact there exists a geometric realization
functor T : sSet→ Top which is left adjoint to the singular
functor S : Top→ sSet, i.e.,

HomTop(TX, Y ) ∼= HomsSet(X,SY )

for any simplicial set X and topological space Y . ((SY )n is just
the set of continuous maps from an n-simplex to the topological
space Y ; it should be clear then how maps [m]→ [n] induce
functions (SY )n → (SY )m. S is, of course, the functor
underlying the singular homology of Y ). The remarkable point
is that whatever distortions or identifications these functors
might introduce, they do respect the natural notions of
homotopy (fibrations, cofibrations, weak equivalences) on each
side. It’s this fact which the phrase Quillen equivalence should
be understood to primarily signify. Moreover, each category
contains a class of objects best suited for homotopy operations:
the CW complexes in Top; the Kan complexes in sSet.
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I should probably come to the point

We return to the orbit of what this talk is supposed to be about
with one more example of a simplicial set.

Example
For any quasi-order Q, let NQ denote the nerve of Q; this is the
simplicial set whose n-simplices consist of the length-(n+ 1)
chains in Q.

In this perspective, a function c : [κ]n+1 → λ, for example, is
just a coloring of the nondegenerate n-faces of Nκ. It’s useful
to introduce some further notation at this stage.

Notation
For any n ≥ 0 the family of maps vi : [0]→ [n] : 0 7→ i
determines a family of maps v∗i : Xn → X0. Let

vert(x) = {v∗i (x) | i ∈ [n]}

for any x ∈ Xn.
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nerves, Kan complexes, and Ex

The nerve functor N fully and faithfully embeds the category of
quasi-orders into the category of simplicial sets. Within the
framework of the latter, N has one main shortcoming, which is
that the nerve of a (nontrivial) quasi-order is never a Kan
complex. More important than Kan complexes’ definition for us
right now is their analogy with CW complexes: just as any
topological space may be replaced by a weakly equivalent CW
complex, any simplicial set may be converted to a Kan complex
via repeated applications of the Ex functor, which should be
thought of as the reverse (or more precisely right adjoint) of the
subdivision functor on simplicial sets.

Soft Definition
For any quasi-order Q, the elements of (ExNQ)n are the copies
of the subdivision of the standard abstract n-simplex in Q.
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PHn restated

To come now fully to the point:

Definition
For any simplicial set X and n > 0, say Z ⊆ Xn spans Y ⊆ X0
if for every ȳ ∈ [Y ]n+1 there exists a z ∈ Z with vert(Z) = ȳ.

κ→ (κ)n+1
ω then translates as:

For all c : [κ]n+1 → ω there exists a cofinal Y ⊆ κ and
c-monochromatic Z ⊆ (Nκ)n spanning Y .

And PHn(κ) translates as:

For all c : κn+1 → ω there exists a cofinal Y ⊆ κ and
c-monochromatic Z ⊆ (ExNκ)n spanning Y .

More generally, PHn(Q) asserts for any quasi-order Q that:

For all c : Qn+1 → ω there exists a cofinal Y ⊆ Q and
c-monochromatic Z ⊆ (ExNQ)n spanning Y .
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PHn for definable partitions

Just to recap: at the heart of several recent results on the
vanishing of limn, the arguments of which had all involved a
distracting amount of algebra, is the purely combinatorial
principle PHn. This decomposition of those arguments
facilitates a closer analysis of their descriptive set theoretic
content, and this is what motivated the study of these principles
in the first place. More particularly, we were interested in the
higher-n versions of Todorcevic’s aforementioned result that any
analytic coherent family Φ = {ϕf : `(f)→ Z | f ∈ ωω} is trivial.
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universally Baire n-coherent families

Under a hypothesis which we denote (†) (with consistency
strength an inaccessible cardinal), Todorcevic’s result admits
the following strong generalization:

Theorem (†)
Any universally Baire n-coherent family Φ = {ϕ~f | ~f ∈ (ωω)n}
admits a Σ2

1 trivialization.

(Recall that a subset A of a Polish space Y is universally Baire
if for any topological space X and continuous f : X → Y ,
f−1(A) has the property of Baire in X. (And recall that a
subset B of a topological space X has the property of Baire if
there is an open U ⊆ X such that the symmetric difference of B
and U is meager in X.)) Relatedly:

Theorem
Suppose that there is a supercompact cardinal or a proper class
of Woodin cardinals. Then L(R) � “limn A = 0 for all n > 0”.
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Hn-measurability and PHn

Back of these results is an analysis of PHn(Ω) in relation to
notions of Hn-meagerness and Hn-measurability which are
closely tied to n-fold iterations of Hechler forcing.

Definition
Let the Hechler topology τ denote the topology on ωω which is
generated by the basic open sets

Nk(f) := {g ∈ ωω | g ≥ f and g � k = f � k}.

Note that this topology is first countable and Choquet (a strong
way of saying that (ωω, τ) is a Baire space).

Definition
X ⊆ ωω is H1-meager if it is a countable union of τ -nowhere
dense sets. X is H1-measurable if it has the property of Baire
with respect to τ . The higher-n variants of these notions derive
from H1 via a fairly complicated recursion.
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Putting it all together

We may now, at long last, state our key theorem. It is the
following:

Theorem (†)
“PHn(Ω) holds for measurable partitions”. Somewhat more
precisely, if c : (ωω)n+1 → ω is an Hn+1-measurable function
then there exists an (n+ 1)-cofinal function F : Ω≤n+1 → Ω
which is Σ1

2 and such that c ◦ F ∗ is constant.

For full disclosure, the principle † should perhaps be recorded:
it is the hypothesis that for every n > 0, every Σ1

2 subset of Ω[n]

is Hn-measurable. It holds in the Solovay model, and carries
the consequence that every universally Baire Σ1

2 subset of Ω[n] is
Hn-measurable.



Putting it all together

We may now, at long last, state our key theorem. It is the
following:

Theorem (†)
“PHn(Ω) holds for measurable partitions”. Somewhat more
precisely, if c : (ωω)n+1 → ω is an Hn+1-measurable function
then there exists an (n+ 1)-cofinal function F : Ω≤n+1 → Ω
which is Σ1

2 and such that c ◦ F ∗ is constant.

For full disclosure, the principle † should perhaps be recorded:
it is the hypothesis that for every n > 0, every Σ1

2 subset of Ω[n]

is Hn-measurable. It holds in the Solovay model, and carries
the consequence that every universally Baire Σ1

2 subset of Ω[n] is
Hn-measurable.



Putting it all together

We may now, at long last, state our key theorem. It is the
following:

Theorem (†)
“PHn(Ω) holds for measurable partitions”. Somewhat more
precisely, if c : (ωω)n+1 → ω is an Hn+1-measurable function
then there exists an (n+ 1)-cofinal function F : Ω≤n+1 → Ω
which is Σ1

2 and such that c ◦ F ∗ is constant.

For full disclosure, the principle † should perhaps be recorded:
it is the hypothesis that for every n > 0, every Σ1

2 subset of Ω[n]

is Hn-measurable. It holds in the Solovay model, and carries
the consequence that every universally Baire Σ1

2 subset of Ω[n] is
Hn-measurable.



Putting it all together

We may now, at long last, state our key theorem. It is the
following:

Theorem (†)
“PHn(Ω) holds for measurable partitions”. Somewhat more
precisely, if c : (ωω)n+1 → ω is an Hn+1-measurable function
then there exists an (n+ 1)-cofinal function F : Ω≤n+1 → Ω
which is Σ1

2 and such that c ◦ F ∗ is constant.

For full disclosure, the principle † should perhaps be recorded:
it is the hypothesis that for every n > 0, every Σ1

2 subset of Ω[n]

is Hn-measurable. It holds in the Solovay model, and carries
the consequence that every universally Baire Σ1

2 subset of Ω[n] is
Hn-measurable.



thanks

Many thanks to the organizers for the invitation,

and to the audience for their attention,

and for any questions which any of you may have.



thanks

Many thanks to the organizers for the invitation,

and to the audience for their attention,

and for any questions which any of you may have.


