Breaking and Preserving [Some] Choice

Asaf Karagila

University of Leeds

18 August 2022

Young Set Theory Workshop 2020

Asaf Karagila (Leeds)

Breaking and Preserving [Some] Choice

Breaking and Preserving [Some] Choice

Asaf Karagila

University of Leeds

18 August 2022

Young Set Theory Workshop 2020 2022

Part I Weak Choice Principles

Asaf Karagila (Leeds)

Breaking and Preserving [Some] Choice

18 August 2022

The **Principle of Dependent Choice** (DC) states that if T is a tree, then T

has a maximal node or an infinite chain.

The **Principle of Dependent Choice** (DC) states that if T is a tree, then T has a maximal node or an infinite chain.

Proposition (ZF + DC)

Every infinite set has a countably infinite subset.

The **Principle of Dependent Choice** (DC) states that if T is a tree, then T has a maximal node or an infinite chain.

Proposition (ZF + DC)

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, and let T be the set of all injective finite sequences of elements of X, ordered by end-extension.

The **Principle of Dependent Choice** (DC) states that if T is a tree, then T has a maximal node or an infinite chain.

Proposition (ZF + DC)

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, and let T be the set of all injective finite sequences of elements of X, ordered by end-extension. Since X is infinite, T does not have any maximal nodes.

The **Principle of Dependent Choice** (DC) states that if T is a tree, then T has a maximal node or an infinite chain.

Proposition (ZF + DC)

Every infinite set has a countably infinite subset.

Proof.

Let *X* be an infinite set, and let *T* be the set of all injective finite sequences of elements of *X*, ordered by end-extension. Since *X* is infinite, *T* does not have any maximal nodes. If $C \subseteq T$ is an infinite chain, then $\bigcup C$ is an injective function from ω into *X*.

The following are equivalent:

2

The following are equivalent:

DC.

Suppose that *A* is a set and *R* is a relation on *A* with dom R = A, then given any $a_0 \in A$, there is a function $f: \omega \to A$ such that $f(0) = a_0$ and f(n) R f(n + 1).

The following are equivalent:

DC.

Suppose that *A* is a set and *R* is a relation on *A* with dom R = A, then given any $a_0 \in A$, there is a function $f: \omega \to A$ such that $f(0) = a_0$ and f(n) R f(n + 1).

The Baire Category Theorem.

The following are equivalent:

DC.

Suppose that *A* is a set and *R* is a relation on *A* with dom R = A, then given any $a_0 \in A$, there is a function $f: \omega \to A$ such that $f(0) = a_0$ and f(n) R f(n + 1).

- The Baire Category Theorem.
- If \mathbb{P} is a σ -closed forcing, then \mathbb{P} is σ -distributive.

The following are equivalent:

DC.

- Suppose that *A* is a set and *R* is a relation on *A* with dom R = A, then given any $a_0 \in A$, there is a function $f: \omega \to A$ such that $f(0) = a_0$ and f(n) R f(n + 1).
- The Baire Category Theorem.
- **9** If \mathbb{P} is a σ -closed forcing, then \mathbb{P} is σ -distributive.
- Oownwards Löwenheim–Skolem Theorem for countable languages.

The following are equivalent:

DC.

- Suppose that *A* is a set and *R* is a relation on *A* with dom R = A, then given any $a_0 \in A$, there is a function $f: \omega \to A$ such that $f(0) = a_0$ and f(n) R f(n + 1).
- The Baire Category Theorem.
- **9** If \mathbb{P} is a σ -closed forcing, then \mathbb{P} is σ -distributive.
- Oownwards Löwenheim–Skolem Theorem for countable languages.
- Rasiowa–Sikorski Theorem.

The following are equivalent:

DC.

- Suppose that *A* is a set and *R* is a relation on *A* with dom R = A, then given any $a_0 \in A$, there is a function $f: \omega \to A$ such that $f(0) = a_0$ and f(n) R f(n + 1).
- The Baire Category Theorem.
- **9** If \mathbb{P} is a σ -closed forcing, then \mathbb{P} is σ -distributive.
- Oownwards Löwenheim–Skolem Theorem for countable languages.
- 💿 Rasiowa–Sikorski Theorem.
- A partial order P is well-founded if and only if it does not have infinite descending chains.

The **Axiom of Countable Choice** (AC_{ω}) states that if $\{A_n \mid n < \omega\}$ is a family of non-empty sets, then there is a function f with domain ω , and $f(n) \in A_n$ for all $n < \omega$.

The **Axiom of Countable Choice** (AC_{ω}) states that if $\{A_n \mid n < \omega\}$ is a family of non-empty sets, then there is a function f with domain ω , and $f(n) \in A_n$ for all $n < \omega$.

Proposition

 $\mathsf{DC} \implies \mathsf{AC}_{\omega}.$

The **Axiom of Countable Choice** (AC_{ω}) states that if $\{A_n \mid n < \omega\}$ is a family of non-empty sets, then there is a function f with domain ω , and $f(n) \in A_n$ for all $n < \omega$.

Proposition

 $\mathsf{DC} \implies \mathsf{AC}_{\omega}.$

Proof.

Let $\{A_n \mid n < \omega\}$ be a family of non-empty sets. Consider the tree T such that $t \in T$ if and only if there is some $n < \omega$ such that t is a choice function from $\{A_i \mid i < n\}$, ordered by end-extension.

The **Axiom of Countable Choice** (AC_{ω}) states that if $\{A_n \mid n < \omega\}$ is a family of non-empty sets, then there is a function f with domain ω , and $f(n) \in A_n$ for all $n < \omega$.

Proposition

 $\mathsf{DC} \implies \mathsf{AC}_{\omega}.$

Proof.

Let $\{A_n \mid n < \omega\}$ be a family of non-empty sets. Consider the tree T such that $t \in T$ if and only if there is some $n < \omega$ such that t is a choice function from $\{A_i \mid i < n\}$, ordered by end-extension.

Remark

The inverse implication does not hold.

< < >>

The **Axiom of Countable Choice** (AC_{ω}) states that if $\{A_n \mid n < \omega\}$ is a family of non-empty sets, then there is a function f with domain ω , and $f(n) \in A_n$ for all $n < \omega$.

Proposition

 $\mathsf{DC} \implies \mathsf{AC}_{\omega}.$

Proof.

Let $\{A_n \mid n < \omega\}$ be a family of non-empty sets. Consider the tree T such that $t \in T$ if and only if there is some $n < \omega$ such that t is a choice function from $\{A_i \mid i < n\}$, ordered by end-extension.

Remark

The inverse implication does not hold. Namely, it is consistent with ZF that AC $_{\omega}$ holds, but DC fails.

A D > A A + A

Every infinite set has a countably infinite subset.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set,

∃ >

-47 ▶

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, let $A_n = \{f : n + 1 \rightarrow X \mid f \text{ is injective}\}$ for all $n < \omega$.

Image: A matched and A matc

3 x 3

Every infinite set has a countably infinite subset.

Proof.

Let *X* be an infinite set, let $A_n = \{f : n + 1 \rightarrow X \mid f \text{ is injective}\}$ for all $n < \omega$. Let *f* be a choice function from $\{A_n \mid n < \omega\}$ and let $f_n = f(n)$.

Every infinite set has a countably infinite subset.

Proof.

Let *X* be an infinite set, let $A_n = \{f : n + 1 \to X \mid f \text{ is injective}\}$ for all $n < \omega$. Let *f* be a choice function from $\{A_n \mid n < \omega\}$ and let $f_n = f(n)$. We define $x_0 = f_0(0)$; and let x_{n+1} be the least $f_m(k)$ which is not any of the x_i for i < n, for whatever *m*.

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, let $A_n = \{f : n + 1 \to X \mid f \text{ is injective}\}$ for all $n < \omega$. Let f be a choice function from $\{A_n \mid n < \omega\}$ and let $f_n = f(n)$. We define $x_0 = f_0(0)$; and let x_{n+1} be the least $f_m(k)$ which is not any of the x_i for i < n, for whatever m.

Note that for any given n, f_i for i < n can only enumerate less than n! + 1 elements, so by going to $f_{n!+1}$ we are guaranteed to find a suitable candidate for x_{n+1} .

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, let $A_n = \{f : n + 1 \to X \mid f \text{ is injective}\}$ for all $n < \omega$. Let f be a choice function from $\{A_n \mid n < \omega\}$ and let $f_n = f(n)$. We define $x_0 = f_0(0)$; and let x_{n+1} be the least $f_m(k)$ which is not any of the x_i for i < n, for whatever m.

Note that for any given n, f_i for i < n can only enumerate less than n! + 1 elements, so by going to $f_{n!+1}$ we are guaranteed to find a suitable candidate for x_{n+1} .

Remark

The statement that every infinite set has a countably infinite subset is weaker than AC_{ω} .

< □ > < 同 > < 回 > < 回 > < 回 >

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, let $A_n = \{f : n + 1 \to X \mid f \text{ is injective}\}$ for all $n < \omega$. Let f be a choice function from $\{A_n \mid n < \omega\}$ and let $f_n = f(n)$. We define $x_0 = f_0(0)$; and let x_{n+1} be the least $f_m(k)$ which is not any of the x_i for i < n, for whatever m.

Note that for any given n, f_i for i < n can only enumerate less than n! + 1 elements, so by going to $f_{n!+1}$ we are guaranteed to find a suitable candidate for x_{n+1} .

Remark

The statement that every infinite set has a countably infinite subset is weaker than AC_{ω} . It is equivalent to the statement "If $\{A_i \mid i \in I\}$ is a family of sets which are co-finite subsets of $\bigcup A_i$, then it admits a choice function."

э

The following are equivalent:

Asaf Karagila (Leeds)

2

- AC_ω.
- If {A_n | n < ω} is a family of non-empty sets, then there is an infinite I ⊆ ω such that {A_i | i ∈ I} admits a choice function.

- AC $_{\omega}$.
- 2 If $\{A_n \mid n < \omega\}$ is a family of non-empty sets, then there is an infinite $I \subseteq \omega$ such that $\{A_i \mid i \in I\}$ admits a choice function.
- Ountable sums of Lindelöf spaces are Lindelöf.

- Δ
 AC_ω.
- 2 If $\{A_n \mid n < \omega\}$ is a family of non-empty sets, then there is an infinite $I \subseteq \omega$ such that $\{A_i \mid i \in I\}$ admits a choice function.
- Ountable sums of Lindelöf spaces are Lindelöf.
- Countable sums of separable spaces are separable.

- AC $_{\omega}$.
- 2 If $\{A_n \mid n < \omega\}$ is a family of non-empty sets, then there is an infinite $I \subseteq \omega$ such that $\{A_i \mid i \in I\}$ admits a choice function.
- Ountable sums of Lindelöf spaces are Lindelöf.
- Ountable sums of separable spaces are separable.
- Solution If X is a metric space and $A \subseteq X$, then cl(A) = lim(A).

- AC_ω.
- If {A_n | n < ω} is a family of non-empty sets, then there is an infinite I ⊆ ω such that {A_i | i ∈ I} admits a choice function.
- Countable sums of Lindelöf spaces are Lindelöf.
- Countable sums of separable spaces are separable.
- So If X is a metric space and $A \subseteq X$, then cl(A) = lim(A).
- If f is a function between two metric spaces, then f is continuous if and only if it is sequentially continuous.

The **Boolean Prime Ideal Theorem** (BPI) states that if *B* is a Boolean algebra, then *B* contains a prime ideal.

The **Boolean Prime Ideal Theorem** (BPI) states that if *B* is a Boolean algebra, then *B* contains a prime ideal.

Proposition

 $\mathsf{BPI} \implies \mathsf{every} \ \mathsf{filter} \ \mathsf{can} \ \mathsf{be} \ \mathsf{extended} \ \mathsf{to} \ \mathsf{an} \ \mathsf{ultrafilter} \ \mathsf{(Ultrafilter} \ \mathsf{Lemma)}.$

The **Boolean Prime Ideal Theorem** (BPI) states that if *B* is a Boolean algebra, then *B* contains a prime ideal.

Proposition

 $\mathsf{BPI} \implies \mathsf{every} \ \mathsf{filter} \ \mathsf{can} \ \mathsf{be} \ \mathsf{extended} \ \mathsf{to} \ \mathsf{an} \ \mathsf{ultrafilter} \ \mathsf{(Ultrafilter} \ \mathsf{Lemma)}.$

Proof.

If *F* is a filter on a set *X*, consider the Boolean algebra $\mathcal{P}(X)/F$.

The **Boolean Prime Ideal Theorem** (BPI) states that if *B* is a Boolean algebra, then *B* contains a prime ideal.

Proposition

 $\mathsf{BPI} \implies \mathsf{every} \ \mathsf{filter} \ \mathsf{can} \ \mathsf{be} \ \mathsf{extended} \ \mathsf{to} \ \mathsf{an} \ \mathsf{ultrafilter} \ \mathsf{(Ultrafilter} \ \mathsf{Lemma)}.$

Proof.

If F is a filter on a set X, consider the Boolean algebra $\mathcal{P}(X)/F$. By BPI it has a prime ideal, I.

The **Boolean Prime Ideal Theorem** (BPI) states that if *B* is a Boolean algebra, then *B* contains a prime ideal.

Proposition

 $\mathsf{BPI} \implies \mathsf{every} \ \mathsf{filter} \ \mathsf{can} \ \mathsf{be} \ \mathsf{extended} \ \mathsf{to} \ \mathsf{an} \ \mathsf{ultrafilter} \ \mathsf{(Ultrafilter} \ \mathsf{Lemma)}.$

Proof.

If *F* is a filter on a set *X*, consider the Boolean algebra $\mathcal{P}(X)/F$. By BPI it has a prime ideal, *I*. Define $A \in U \iff [X \setminus A]_F \in I$,

The **Boolean Prime Ideal Theorem** (BPI) states that if *B* is a Boolean algebra, then *B* contains a prime ideal.

Proposition

 $\mathsf{BPI} \implies \mathsf{every} \ \mathsf{filter} \ \mathsf{can} \ \mathsf{be} \ \mathsf{extended} \ \mathsf{to} \ \mathsf{an} \ \mathsf{ultrafilter} \ \mathsf{(Ultrafilter} \ \mathsf{Lemma)}.$

Proof.

If *F* is a filter on a set *X*, consider the Boolean algebra $\mathcal{P}(X)/F$. By BPI it has a prime ideal, *I*. Define $A \in U \iff [X \setminus A]_F \in I$, then *U* is a filter extending *F*.

The **Boolean Prime Ideal Theorem** (BPI) states that if *B* is a Boolean algebra, then *B* contains a prime ideal.

Proposition

 $\mathsf{BPI} \implies \mathsf{every} \ \mathsf{filter} \ \mathsf{can} \ \mathsf{be} \ \mathsf{extended} \ \mathsf{to} \ \mathsf{an} \ \mathsf{ultrafilter} \ \mathsf{(Ultrafilter} \ \mathsf{Lemma)}.$

Proof.

If *F* is a filter on a set *X*, consider the Boolean algebra $\mathcal{P}(X)/F$. By BPI it has a prime ideal, *I*. Define $A \in U \iff [X \setminus A]_F \in I$, then *U* is a filter extending *F*. Moreover, *U* is an ultrafilter, since for Boolean algebras prime ideals are maximal, and so either $[A]_F \in I$ or $[X \setminus A]_F \in I$.

The **Boolean Prime Ideal Theorem** (BPI) states that if *B* is a Boolean algebra, then *B* contains a prime ideal.

Proposition

 $\mathsf{BPI} \implies \mathsf{every} \ \mathsf{filter} \ \mathsf{can} \ \mathsf{be} \ \mathsf{extended} \ \mathsf{to} \ \mathsf{an} \ \mathsf{ultrafilter} \ \mathsf{(Ultrafilter} \ \mathsf{Lemma)}.$

Proof.

If *F* is a filter on a set *X*, consider the Boolean algebra $\mathcal{P}(X)/F$. By BPI it has a prime ideal, *I*. Define $A \in U \iff [X \setminus A]_F \in I$, then *U* is a filter extending *F*. Moreover, *U* is an ultrafilter, since for Boolean algebras prime ideals are maximal, and so either $[A]_F \in I$ or $[X \setminus A]_F \in I$.

Remark

The reverse implication holds. Namely, the Ultrafilter Lemma implies the Boolean Prime Ideal Theorem.

< □ > < 同 > < 三 > < 三 >

Every set can be linearly ordered.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let S(X) be the set of finite injective sequences from X.

∃ >

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let S(X) be the set of finite injective sequences from X. Let U be an ultrafilter on S(X) containing all the sets $A_x = \{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$.

Every set can be linearly ordered.

Proof.

Let *X* be an infinite set, and let *S*(*X*) be the set of finite injective sequences from *X*. Let *U* be an ultrafilter on *S*(*X*) containing all the sets $A_x = \{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$. Define $x < y \iff \{f \in S(X) \mid f^{-1}(x) < f^{-1}(y)\} \in U.$

Every set can be linearly ordered.

Proof.

Let *X* be an infinite set, and let *S*(*X*) be the set of finite injective sequences from *X*. Let *U* be an ultrafilter on *S*(*X*) containing all the sets $A_x = \{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$. Define $x < y \iff \{f \in S(X) \mid f^{-1}(x) < f^{-1}(y)\} \in U.$

This relation is easily irreflexive.

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let S(X) be the set of finite injective sequences from X. Let U be an ultrafilter on S(X) containing all the sets $A_x = \{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$. Define

 $x < y \iff \{f \in S(X) \mid f^{-1}(x) < f^{-1}(y)\} \in U.$

This relation is easily irreflexive. If x < y and y < z, let A and B be in U to witness those respectively.

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let S(X) be the set of finite injective sequences from X. Let U be an ultrafilter on S(X) containing all the sets $A_x = \{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$. Define

$$x < y \iff \{f \in S(X) \mid f^{-1}(x) < f^{-1}(y)\} \in U.$$

This relation is easily irreflexive. If x < y and y < z, let A and B be in U to witness those respectively. Then for $f \in A \cap B$ it is true that $f^{-1}(x) < f^{-1}(y) < f^{-1}(z)$.

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let S(X) be the set of finite injective sequences from X. Let U be an ultrafilter on S(X) containing all the sets $A_x = \{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$. Define

 $x < y \iff \{f \in S(X) \mid f^{-1}(x) < f^{-1}(y)\} \in U.$

This relation is easily irreflexive. If x < y and y < z, let A and B be in U to witness those respectively. Then for $f \in A \cap B$ it is true that $f^{-1}(x) < f^{-1}(y) < f^{-1}(z)$. Finally, given any $x, y \in X$, then $A_x \cap A_y \in U$, and so exactly one of $\{f \in S(X) \mid f^{-1}(x) < f^{-1}(y)\}$ and $\{f \in S(X) \mid f^{-1}(y) < f^{-1}(x)\}$ is in U.

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let S(X) be the set of finite injective sequences from X. Let U be an ultrafilter on S(X) containing all the sets $A_x = \{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$. Define

 $x < y \iff \{f \in S(X) \mid f^{-1}(x) < f^{-1}(y)\} \in U.$

This relation is easily irreflexive. If x < y and y < z, let A and B be in U to witness those respectively. Then for $f \in A \cap B$ it is true that $f^{-1}(x) < f^{-1}(y) < f^{-1}(z)$. Finally, given any $x, y \in X$, then $A_x \cap A_y \in U$, and so exactly one of $\{f \in S(X) \mid f^{-1}(x) < f^{-1}(y)\}$ and $\{f \in S(X) \mid f^{-1}(y) < f^{-1}(x)\}$ is in U.

Remark

BPI is consistent with the existence of an infinite set without a countably infinite subset!

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let S(X) be the set of finite injective sequences from X. Let U be an ultrafilter on S(X) containing all the sets $A_x = \{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$. Define

 $x < y \iff \{f \in S(X) \mid f^{-1}(x) < f^{-1}(y)\} \in U.$

This relation is easily irreflexive. If x < y and y < z, let A and B be in U to witness those respectively. Then for $f \in A \cap B$ it is true that $f^{-1}(x) < f^{-1}(y) < f^{-1}(z)$. Finally, given any $x, y \in X$, then $A_x \cap A_y \in U$, and so exactly one of $\{f \in S(X) \mid f^{-1}(x) < f^{-1}(y)\}$ and $\{f \in S(X) \mid f^{-1}(y) < f^{-1}(x)\}$ is in U.

Remark

BPI is consistent with the existence of an infinite set without a countably infinite subset! It is in fact independent of DC and AC_{ω} !

Asaf Karagila (Leeds)

The following are equivalent:

BPI.

The following are equivalent:

- BPI.
- Ine Ultrafilter Lemma.

문어 문

The following are equivalent:

BPI.

2 The Ultrafilter Lemma.

The compactness theorem for first-order logic.

The following are equivalent:

BPI.

- 2 The Ultrafilter Lemma.
- The compactness theorem for first-order logic.
- The completeness theorem for first-order logic.

The following are equivalent:

BPI.

- 2 The Ultrafilter Lemma.
- The compactness theorem for first-order logic.
- The completeness theorem for first-order logic.
- Banach–Alaoglu Theorem.

The following are equivalent:

- BPI.
- O The Ultrafilter Lemma.
- The compactness theorem for first-order logic.
- The completeness theorem for first-order logic.
- Banach–Alaoglu Theorem.
- Interproduct of compact Hausdorff spaces is a compact Hausdorff space.

The following are equivalent:

- BPI.
- O The Ultrafilter Lemma.
- The compactness theorem for first-order logic.
- The completeness theorem for first-order logic.
- Banach–Alaoglu Theorem.
- Interproduct of compact Hausdorff spaces is a compact Hausdorff space.
- \bigcirc 2^{I} is compact for any set *I*, where 2 is discrete.

The following are equivalent:

- BPI.
- 2 The Ultrafilter Lemma.
- The compactness theorem for first-order logic.
- The completeness theorem for first-order logic.
- Banach–Alaoglu Theorem.
- Interproduct of compact Hausdorff spaces is a compact Hausdorff space.
- $\bigcirc 2^{I}$ is compact for any set *I*, where 2 is discrete.
- If R is a commutative ring with a unit, then every ideal is contained in a prime ideal.

Part II Symmetric Systems

Asaf Karagila (Leeds)

Breaking and Preserving [Some] Choice

18 August 2022

∃ ⊳

Let \mathbb{P} be a notion of forcing.

-

Image: A matrix and a matrix

$$\pi \dot{x} = \{ \langle \pi p, \pi \dot{y} \rangle \mid \langle p, \dot{y} \rangle \in \dot{x} \}.$$

 $\pi \dot{x} = \{ \langle \pi p, \pi \dot{y} \rangle \mid \langle p, \dot{y} \rangle \in \dot{x} \}.$

Proposition

If x is in the ground model, then $\pi \check{x} = \check{x}$.

$$\pi \dot{x} = \{ \langle \pi p, \pi \dot{y} \rangle \mid \langle p, \dot{y} \rangle \in \dot{x} \}.$$

Proposition

If x is in the ground model, then $\pi \check{x} = \check{x}$.

Proof.

By \in -recursion on x.

$$\pi \dot{x} = \{ \langle \pi p, \pi \dot{y} \rangle \mid \langle p, \dot{y} \rangle \in \dot{x} \}.$$

Proposition

If x is in the ground model, then $\pi \check{x} = \check{x}$.

Proof.

By \in -recursion on x. Recall that $\check{x} = \{ \langle \mathbb{1}, \check{y} \rangle \mid y \in x \}$.

 $\pi \dot{x} = \{ \langle \pi p, \pi \dot{y} \rangle \mid \langle p, \dot{y} \rangle \in \dot{x} \}.$

Proposition

If x is in the ground model, then $\pi \check{x} = \check{x}$.

Proof.

By \in -recursion on x. Recall that $\check{x} = \{ \langle \mathbb{1}, \check{y} \rangle \mid y \in x \}$. Since $\pi \mathbb{1} = \mathbb{1}$ and by the recursion hypothesis $\pi \check{y} = \check{y}$ for all $y \in x$ the result follows.

$$\pi \dot{x} = \{ \langle \pi p, \pi \dot{y} \rangle \mid \langle p, \dot{y} \rangle \in \dot{x} \}.$$

Proposition

If x is in the ground model, then $\pi \check{x} = \check{x}$.

Proof.

By \in -recursion on x. Recall that $\check{x} = \{ \langle \mathbb{1}, \check{y} \rangle \mid y \in x \}$. Since $\pi \mathbb{1} = \mathbb{1}$ and by the recursion hypothesis $\pi \check{y} = \check{y}$ for all $y \in x$ the result follows.

Lemma (The Symmetry Lemma)

 $p\Vdash\varphi(\dot{x})\iff \pi p\Vdash\varphi(\pi\dot{x}).$

Let \mathscr{G} be a group. We say that \mathscr{F} is a **filter of subgroups on** \mathscr{G} if it is a non-empty collection of subgroups of \mathscr{G} which is closed under finite intersections and supergroups.

Let \mathscr{G} be a group. We say that \mathscr{F} is a **filter of subgroups on** \mathscr{G} if it is a non-empty collection of subgroups of \mathscr{G} which is closed under finite intersections and supergroups.

We say that \mathscr{F} is a **normal** filter of subgroup if whenever $\pi \in \mathscr{G}$ and $H \in \mathscr{F}$, then $\pi H \pi^{-1} \in \mathscr{F}$.

Let \mathscr{G} be a group. We say that \mathscr{F} is a **filter of subgroups on** \mathscr{G} if it is a non-empty collection of subgroups of \mathscr{G} which is closed under finite intersections and supergroups.

We say that \mathscr{F} is a **normal** filter of subgroup if whenever $\pi \in \mathscr{G}$ and $H \in \mathscr{F}$, then $\pi H \pi^{-1} \in \mathscr{F}$.

We say that $\langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ is a **symmetric system** when \mathbb{P} is a notion of forcing, \mathscr{G} is a group of automorphisms of \mathbb{P} , and \mathscr{F} is a normal filter of subgroups on \mathscr{G} .

13/29

Let $\langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ be a symmetric system.

-

Image: A matrix and a matrix

2

$$\operatorname{sym}_{\mathscr{G}}(\dot{x}) = \{ \pi \in \mathscr{G} \mid \pi \dot{x} = \dot{x} \}.$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\operatorname{sym}_{\mathscr{G}}(\dot{x}) = \{ \pi \in \mathscr{G} \mid \pi \dot{x} = \dot{x} \}.$$

If this property holds hereditarily for all the names that appear in \dot{x} , we say that \dot{x} is **hereditarily** \mathscr{F} -symmetric.

$$\operatorname{sym}_{\mathscr{G}}(\dot{x}) = \{ \pi \in \mathscr{G} \mid \pi \dot{x} = \dot{x} \}.$$

If this property holds hereditarily for all the names that appear in \dot{x} , we say that \dot{x} is **hereditarily** \mathscr{F} -symmetric.

Proposition

 $\operatorname{sym}_{\mathscr{G}}(\pi \dot{x}) = \pi \operatorname{sym}_{\mathscr{G}}(\dot{x})\pi^{-1}.$

$$\operatorname{sym}_{\mathscr{G}}(\dot{x}) = \{ \pi \in \mathscr{G} \mid \pi \dot{x} = \dot{x} \}.$$

If this property holds hereditarily for all the names that appear in \dot{x} , we say that \dot{x} is **hereditarily** \mathscr{F} -symmetric.

Proposition

 $\operatorname{sym}_{\mathscr{G}}(\pi \dot{x}) = \pi \operatorname{sym}_{\mathscr{G}}(\dot{x})\pi^{-1}$. Consequently, if \dot{x} is \mathscr{F} -symmetric, then for all $\pi \in \mathscr{G}, \ \pi \dot{x}$ is \mathscr{F} -symmetric as well.

$$\operatorname{sym}_{\mathscr{G}}(\dot{x}) = \{ \pi \in \mathscr{G} \mid \pi \dot{x} = \dot{x} \}.$$

If this property holds hereditarily for all the names that appear in \dot{x} , we say that \dot{x} is **hereditarily** \mathscr{F} -symmetric.

Proposition

 $\operatorname{sym}_{\mathscr{G}}(\pi \dot{x}) = \pi \operatorname{sym}_{\mathscr{G}}(\dot{x})\pi^{-1}$. Consequently, if \dot{x} is \mathscr{F} -symmetric, then for all $\pi \in \mathscr{G}, \ \pi \dot{x}$ is \mathscr{F} -symmetric as well.

We denote by $HS_{\mathscr{F}}$ the class of all hereditarily \mathscr{F} -symmetric names.

Let G be a V-generic filter, then $M = {\dot{x}^G | \dot{x} \in \mathsf{HS}_{\mathscr{F}}} = \mathsf{HS}^G_{\mathscr{F}}$ is a transitive class in V[G] which contains V, and $M \models \mathsf{ZF}$.

Let G be a V-generic filter, then $M = {\dot{x}^G | \dot{x} \in \mathsf{HS}_{\mathscr{F}}} = \mathsf{HS}^G_{\mathscr{F}}$ is a transitive class in V[G] which contains V, and $M \models \mathsf{ZF}$.

We call such M a **symmetric extension** of V.

Let G be a V-generic filter, then $M = {\dot{x}^G | \dot{x} \in \mathsf{HS}_{\mathscr{F}}} = \mathsf{HS}^G_{\mathscr{F}}$ is a transitive class in V[G] which contains V, and $M \models \mathsf{ZF}$.

We call such M a **symmetric extension** of V. We also have a forcing relation, \Vdash^{HS} which is the relativisation of \Vdash to $HS_{\mathscr{F}}$,

Let G be a V-generic filter, then $M = {\dot{x}^G | \dot{x} \in \mathsf{HS}_{\mathscr{F}}} = \mathsf{HS}^G_{\mathscr{F}}$ is a transitive class in V[G] which contains V, and $M \models \mathsf{ZF}$.

We call such M a **symmetric extension** of V. We also have a forcing relation, \Vdash^{HS} which is the relativisation of \Vdash to $HS_{\mathscr{F}}$, this relation behaves exactly as expected.

Let G be a V-generic filter, then $M = {\dot{x}^G | \dot{x} \in \mathsf{HS}_{\mathscr{F}}} = \mathsf{HS}^G_{\mathscr{F}}$ is a transitive class in V[G] which contains V, and $M \models \mathsf{ZF}$.

We call such M a **symmetric extension** of V. We also have a forcing relation, \Vdash^{HS} which is the relativisation of \Vdash to $HS_{\mathscr{F}}$, this relation behaves exactly as expected.

It even satisfies a version of the Symmetry Lemma when we restrict the automorphisms to the group \mathscr{G} .

Let G be a V-generic filter, then $M = {\dot{x}^G | \dot{x} \in \mathsf{HS}_{\mathscr{F}}} = \mathsf{HS}^G_{\mathscr{F}}$ is a transitive class in V[G] which contains V, and $M \models \mathsf{ZF}$.

We call such M a **symmetric extension** of V. We also have a forcing relation, \Vdash^{HS} which is the relativisation of \Vdash to $HS_{\mathscr{F}}$, this relation behaves exactly as expected.

It even satisfies a version of the Symmetry Lemma when we restrict the automorphisms to the group \mathscr{G} .

We will omit the subscripts from here on end, since the symmetric system will be clear from context.

We say that M satisfies **Small Violations of Choice** (SVC) if there is some X such that for any set Y there is some ordinal α and a surjection from $X \times \alpha$ onto Y.

We say that M satisfies **Small Violations of Choice** (SVC) if there is some X such that for any set Y there is some ordinal α and a surjection from $X \times \alpha$ onto Y. We call such X a seed.

We say that M satisfies **Small Violations of Choice** (SVC) if there is some X such that for any set Y there is some ordinal α and a surjection from $X \times \alpha$ onto Y. We call such X a seed.

Theorem

M is a model of SVC if and only if M is a symmetric extension of some model of ZFC.

We say that M satisfies **Small Violations of Choice** (SVC) if there is some X such that for any set Y there is some ordinal α and a surjection from $X \times \alpha$ onto Y. We call such X a seed.

Theorem

M is a model of SVC if and only if M is a symmetric extension of some model of ZFC.

Theorem

 $M \models \mathsf{SVC}$ if and only if M = V(x) for some $V \models \mathsf{ZFC}$ and $x \in M$.

We say that M satisfies **Small Violations of Choice** (SVC) if there is some X such that for any set Y there is some ordinal α and a surjection from $X \times \alpha$ onto Y. We call such X a seed.

Theorem

M is a model of SVC if and only if M is a symmetric extension of some model of ZFC.

Theorem

 $M \models \mathsf{SVC}$ if and only if M = V(x) for some $V \models \mathsf{ZFC}$ and $x \in M$.

Let's see an example...

Let \mathbb{P} be the forcing $Add(\omega, \omega_1)$.

▶ < ∃ ▶</p>

2

Let \mathbb{P} be the forcing $Add(\omega, \omega_1)$. The conditions, therefore, are finite functions $p \colon \omega_1 \times \omega \to 2$, ordered by reverse inclusion.

$$\dot{a}_{\alpha} = \{ \langle p, \check{n} \rangle \mid p(\alpha, n) = 1 \}.$$

$$\dot{a}_{\alpha} = \{ \langle p, \check{n} \rangle \mid p(\alpha, n) = 1 \}.$$

We will also denote by $\dot{A} = \{\dot{a}_{\alpha} \mid \alpha < \omega_1\}^{\bullet} = \{\langle \mathbb{1}, \dot{a}_{\alpha} \rangle \mid \alpha < \omega_1\}.$

Digression!

If $\{\dot{x}_i \mid i \in I\}$ is a collection of names, we use $\{\dot{x}_i \mid i \in I\}^{\bullet}$ to denote the obvious name they define:

 $\{\langle \mathbb{1}, \dot{x}_i \rangle \mid i \in I\}.$

Digression!

If $\{\dot{x}_i \mid i \in I\}$ is a collection of names, we use $\{\dot{x}_i \mid i \in I\}^{\bullet}$ to denote the obvious name they define:

$$\{\langle \mathbb{1}, \dot{x}_i \rangle \mid i \in I\}.$$

This notation extends naturally to ordered pairs and functions, etc.

Digression!

If $\{\dot{x}_i \mid i \in I\}$ is a collection of names, we use $\{\dot{x}_i \mid i \in I\}^{\bullet}$ to denote the obvious name they define:

 $\{\langle \mathbb{1}, \dot{x}_i \rangle \mid i \in I\}.$

This notation extends naturally to ordered pairs and functions, etc. For example, it simplifies $\check{x} = \{\check{y} \mid y \in x\}^{\bullet}$.

$$\dot{a}_{\alpha} = \{ \langle p, \check{n} \rangle \mid p(\alpha, n) = 1 \}.$$

We will also denote by $\dot{A} = \{\dot{a}_{\alpha} \mid \alpha < \omega_1\}^{\bullet} = \{\langle \mathbb{1}, \dot{a}_{\alpha} \rangle \mid \alpha < \omega_1\}.$

$$\dot{a}_{\alpha} = \{ \langle p, \check{n} \rangle \mid p(\alpha, n) = 1 \}.$$

We will also denote by $\dot{A} = \{\dot{a}_{\alpha} \mid \alpha < \omega_1\}^{\bullet} = \{\langle \mathbb{1}, \dot{a}_{\alpha} \rangle \mid \alpha < \omega_1\}.$

Our group of permutations are going to be the permutations of ω_1 which act on \mathbb{P} in the following way:

 $\pi p(\pi \alpha, n) = p(\alpha, n).$

$$\dot{a}_{\alpha} = \{ \langle p, \check{n} \rangle \mid p(\alpha, n) = 1 \}.$$

We will also denote by $\dot{A} = \{\dot{a}_{\alpha} \mid \alpha < \omega_1\}^{\bullet} = \{\langle \mathbb{1}, \dot{a}_{\alpha} \rangle \mid \alpha < \omega_1\}.$

Our group of permutations are going to be the permutations of ω_1 which act on \mathbb{P} in the following way:

$$\pi p(\pi \alpha, n) = p(\alpha, n).$$

Proposition

 $\pi \dot{a}_{\alpha} = \dot{a}_{\pi\alpha}.$

$$\dot{a}_{\alpha} = \{ \langle p, \check{n} \rangle \mid p(\alpha, n) = 1 \}.$$

We will also denote by $\dot{A} = \{\dot{a}_{\alpha} \mid \alpha < \omega_1\}^{\bullet} = \{\langle \mathbb{1}, \dot{a}_{\alpha} \rangle \mid \alpha < \omega_1\}.$

Our group of permutations are going to be the permutations of ω_1 which act on \mathbb{P} in the following way:

$$\pi p(\pi \alpha, n) = p(\alpha, n).$$

Proposition

 $\pi \dot{a}_{\alpha} = \dot{a}_{\pi \alpha}$. Consequently, $\pi \dot{A} = \dot{A}$ for all $\pi \in \mathscr{G}$.

$$\dot{a}_{\alpha} = \{ \langle p, \check{n} \rangle \mid p(\alpha, n) = 1 \}.$$

We will also denote by $\dot{A} = \{\dot{a}_{\alpha} \mid \alpha < \omega_1\}^{\bullet} = \{\langle \mathbb{1}, \dot{a}_{\alpha} \rangle \mid \alpha < \omega_1\}.$

Our group of permutations are going to be the permutations of ω_1 which act on \mathbb{P} in the following way:

$$\pi p(\pi \alpha, n) = p(\alpha, n).$$

Proposition

$$\pi \dot{a}_{lpha} = \dot{a}_{\pi lpha}$$
. Consequently, $\pi \dot{A} = \dot{A}$ for all $\pi \in \mathscr{G}$.

Proof.

 $\pi p(\pi \alpha, n) = p(\alpha, n)$ by definition of the action of π .

Asaf Karagila (Leeds)

< □ > < 同 > < 回 > < 回 > < 回 >

$$\dot{a}_{\alpha} = \{ \langle p, \check{n} \rangle \mid p(\alpha, n) = 1 \}.$$

We will also denote by $\dot{A} = \{\dot{a}_{\alpha} \mid \alpha < \omega_1\}^{\bullet} = \{\langle \mathbb{1}, \dot{a}_{\alpha} \rangle \mid \alpha < \omega_1\}.$

Our group of permutations are going to be the permutations of ω_1 which act on \mathbb{P} in the following way:

$$\pi p(\pi \alpha, n) = p(\alpha, n).$$

Proposition

$$\pi \dot{a}_{lpha} = \dot{a}_{\pi lpha}$$
. Consequently, $\pi \dot{A} = \dot{A}$ for all $\pi \in \mathscr{G}$.

Proof.

 $\pi p(\pi \alpha, n) = p(\alpha, n)$ by definition of the action of π . Therefore, $\pi p(\pi \alpha, n) = 1$ if and only if $p(\alpha, n) = 1$, and the equality follows.

Asaf Karagila (Leeds)

< ロ > < 同 > < 回 > < 回 >

Image: Image:

The previous proposition tells us that $\dot{a}_{\alpha} \in HS$ for all α ,

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathsf{HS}$ for all α , since $\operatorname{fix}(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathsf{HS}$.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathsf{HS}$ for all α , since $\mathrm{fix}(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathsf{HS}$.

Proposition $1 \Vdash^{HS} \dot{A}$ cannot be well-ordered.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathsf{HS}$ for all α , since $\operatorname{fix}(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathsf{HS}$.

Proposition

 $\mathbb{1} \Vdash^{\mathsf{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \mathsf{HS}$ is a name such that some $p \Vdash^{\mathsf{HS}} \dot{f} : \dot{A} \to \check{\kappa}$.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathsf{HS}$ for all α , since $\operatorname{fix}(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathsf{HS}$.

Proposition

 $\mathbb{1} \Vdash^{\mathsf{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \mathsf{HS}$ is a name such that some $p \Vdash^{\mathsf{HS}} \dot{f} : \dot{A} \to \check{\kappa}$. Let E be such that $\operatorname{fix}(E) \subseteq \operatorname{sym}(\dot{f})$.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathsf{HS}$ for all α , since $\operatorname{fix}(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathsf{HS}$.

Proposition

 $\mathbb{1} \Vdash^{\mathsf{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \text{HS}$ is a name such that some $p \Vdash^{\text{HS}} \dot{f} : \dot{A} \to \check{\kappa}$. Let E be such that $\text{fix}(E) \subseteq \text{sym}(\dot{f})$. Let $q \leqslant p$ be some condition that for some $\alpha \notin E$, $q \Vdash^{\text{HS}} \dot{f}(\dot{a}_{\alpha}) = \check{\xi}$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathsf{HS}$ for all α , since $\mathrm{fix}(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathsf{HS}$.

Proposition

 $\mathbb{1} \Vdash^{\mathsf{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \text{HS}$ is a name such that some $p \Vdash^{\text{HS}} \dot{f} : \dot{A} \to \check{\kappa}$. Let E be such that $\text{fix}(E) \subseteq \text{sym}(\dot{f})$. Let $q \leq p$ be some condition that for some $\alpha \notin E$, $q \Vdash^{\text{HS}} \dot{f}(\dot{a}_{\alpha}) = \check{\xi}$. Let β be an ordinal which is not mentioned in E or q, and consider the cycle $\pi = (\alpha \beta)$.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathsf{HS}$ for all α , since $\mathrm{fix}(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathsf{HS}$.

Proposition

 $\mathbb{1} \Vdash^{\mathsf{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \text{HS}$ is a name such that some $p \Vdash^{\text{HS}} \dot{f} : \dot{A} \to \check{\kappa}$. Let E be such that $\text{fix}(E) \subseteq \text{sym}(\dot{f})$. Let $q \leq p$ be some condition that for some $\alpha \notin E$, $q \Vdash^{\text{HS}} \dot{f}(\dot{a}_{\alpha}) = \check{\xi}$. Let β be an ordinal which is not mentioned in E or q, and consider the cycle $\pi = (\alpha \beta)$. Then πq is compatible with q,

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathsf{HS}$ for all α , since $\mathrm{fix}(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathsf{HS}$.

Proposition

 $\mathbb{1} \Vdash^{\mathsf{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \text{HS}$ is a name such that some $p \Vdash^{\text{HS}} \dot{f} : \dot{A} \to \check{\kappa}$. Let E be such that $\text{fix}(E) \subseteq \text{sym}(\dot{f})$. Let $q \leqslant p$ be some condition that for some $\alpha \notin E$, $q \Vdash^{\text{HS}} \dot{f}(\dot{a}_{\alpha}) = \check{\xi}$. Let β be an ordinal which is not mentioned in E or q, and consider the cycle $\pi = (\alpha \beta)$. Then πq is compatible with q, and $\pi q \Vdash^{\text{HS}} \pi \dot{f}(\pi \dot{a}_{\alpha}) = \pi \check{\xi}$.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathsf{HS}$ for all α , since $\mathrm{fix}(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathsf{HS}$.

Proposition

 $\mathbb{1} \Vdash^{\mathsf{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \text{HS}$ is a name such that some $p \Vdash^{\text{HS}} \dot{f} : \dot{A} \to \check{\kappa}$. Let E be such that $\text{fix}(E) \subseteq \text{sym}(\dot{f})$. Let $q \leqslant p$ be some condition that for some $\alpha \notin E$, $q \Vdash^{\text{HS}} \dot{f}(\dot{a}_{\alpha}) = \check{\xi}$. Let β be an ordinal which is not mentioned in E or q, and consider the cycle $\pi = (\alpha \beta)$. Then πq is compatible with q, and $\pi q \Vdash^{\text{HS}} \pi \dot{f}(\pi \dot{a}_{\alpha}) = \pi \check{\xi}$. Simplifying this, we get $\pi q \Vdash^{\text{HS}} \dot{f}(\dot{a}_{\beta}) = \check{\xi}$.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathsf{HS}$ for all α , since $\mathrm{fix}(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathsf{HS}$.

Proposition

 $\mathbb{1} \Vdash^{\mathsf{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in HS$ is a name such that some $p \Vdash^{HS} \dot{f} : \dot{A} \to \check{\kappa}$. Let E be such that $\operatorname{fix}(E) \subseteq \operatorname{sym}(\dot{f})$. Let $q \leq p$ be some condition that for some $\alpha \notin E$, $q \Vdash^{HS} \dot{f}(\dot{a}_{\alpha}) = \check{\xi}$. Let β be an ordinal which is not mentioned in E or q, and consider the cycle $\pi = (\alpha \beta)$. Then πq is compatible with q, and $\pi q \Vdash^{HS} \pi \dot{f}(\pi \dot{a}_{\alpha}) = \pi \check{\xi}$. Simplifying this, we get $\pi q \Vdash^{HS} \dot{f}(\dot{a}_{\beta}) = \check{\xi}$. Since q and πq are compatible, q could not have forced that \dot{f} is injective, and the same holds for p.

<ロト <回ト < 回ト < 回ト

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathsf{HS}$ for all α , since $\mathrm{fix}(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathsf{HS}$.

Proposition

 $\mathbb{1} \Vdash^{\mathsf{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in HS$ is a name such that some $p \Vdash^{HS} \dot{f} : \dot{A} \to \check{\kappa}$. Let E be such that $fix(E) \subseteq sym(\dot{f})$. Let $q \leqslant p$ be some condition that for some $\alpha \notin E$, $q \Vdash^{HS} \dot{f}(\dot{a}_{\alpha}) = \check{\xi}$. Let β be an ordinal which is not mentioned in E or q, and consider the cycle $\pi = (\alpha \ \beta)$. Then πq is compatible with q, and $\pi q \Vdash^{HS} \pi \dot{f}(\dot{a}_{\alpha}) = \pi \check{\xi}$. Simplifying this, we get $\pi q \Vdash^{HS} \dot{f}(\dot{a}_{\beta}) = \check{\xi}$. Since q and πq are compatible, q could not have forced that \dot{f} is injective, and the same holds for p. But p and \dot{f} were arbitrary so 1 must force that no such injective \dot{f} can exist.

イロン イ団 とく ヨン イヨン

This is a fairly simplistic symmetric system.

< 口 > < 同

2

< 口 > < 同

We can put a structure on ω_1 and only look at automorphisms of that structure.

We can put a structure on ω_1 and only look at automorphisms of that structure.

We can allow the filter be generated by a different class of sets. Etc.

We can put a structure on ω_1 and only look at automorphisms of that structure.

We can allow the filter be generated by a different class of sets. Etc.

The general idea is that the group preserves structure and the filter of groups preserve subsets.

We can put a structure on ω_1 and only look at automorphisms of that structure.

We can allow the filter be generated by a different class of sets. Etc.

The general idea is that the group preserves structure and the filter of groups preserve subsets.

While not entirely accurate, this is a good approximation for the truth.

21/29

We can put a structure on ω_1 and only look at automorphisms of that structure.

We can allow the filter be generated by a different class of sets. Etc.

The general idea is that the group preserves structure and the filter of groups preserve subsets.

While not entirely accurate, this is a good approximation for the truth. And if you take one thing from this, take that.

21/29

For example, we can force with $Add(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \to 2$, ordered by inverse inclusion.

For example, we can force with $Add(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \rightarrow 2$, ordered by inverse inclusion. We define $\dot{a}_{i,j} = \{ \langle p, \check{n} \rangle \mid p(i, j, n) = 1 \}$,

For example, we can force with $Add(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \to 2$, ordered by inverse inclusion. We define $\dot{a}_{i,j} = \{\langle p, \check{n} \rangle \mid p(i, j, n) = 1\}$, and we also define $\dot{A}_i = \{\dot{a}_{i,j} \mid j < \omega\}^{\bullet}$ and $\dot{A} = \langle \dot{A}_i \mid i < \omega \rangle^{\bullet}$.

22/29

For example, we can force with $Add(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \to 2$, ordered by inverse inclusion. We define $\dot{a}_{i,j} = \{\langle p, \check{n} \rangle \mid p(i,j,n) = 1\}$, and we also define $\dot{A}_i = \{\dot{a}_{i,j} \mid j < \omega\}^{\bullet}$ and $\dot{A} = \langle \dot{A}_i \mid i < \omega \rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G} , will be those permutations of $\omega \times \omega$ which preserve the left coordinate.

For example, we can force with $Add(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \to 2$, ordered by inverse inclusion. We define $\dot{a}_{i,j} = \{\langle p, \check{n} \rangle \mid p(i, j, n) = 1\}$, and we also define $\dot{A}_i = \{\dot{a}_{i,j} \mid j < \omega\}^{\bullet}$ and $\dot{A} = \langle \dot{A}_i \mid i < \omega \rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G} , will be those permutations of $\omega \times \omega$ which preserve the left coordinate. Namely, $\pi(i,j) = \langle i,j' \rangle$ for some j'.

For example, we can force with $Add(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \to 2$, ordered by inverse inclusion. We define $\dot{a}_{i,j} = \{\langle p, \check{n} \rangle \mid p(i, j, n) = 1\}$, and we also define $\dot{A}_i = \{\dot{a}_{i,j} \mid j < \omega\}^{\bullet}$ and $\dot{A} = \langle \dot{A}_i \mid i < \omega \rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G} , will be those permutations of $\omega \times \omega$ which preserve the left coordinate. Namely, $\pi(i, j) = \langle i, j' \rangle$ for some j'. The action is the same as before, $\pi p(\pi(i, j), n) = p(i, j, n)$.

For example, we can force with $Add(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \to 2$, ordered by inverse inclusion. We define $\dot{a}_{i,j} = \{\langle p, \check{n} \rangle \mid p(i, j, n) = 1\}$, and we also define $\dot{A}_i = \{\dot{a}_{i,j} \mid j < \omega\}^{\bullet}$ and $\dot{A} = \langle \dot{A}_i \mid i < \omega \rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G} , will be those permutations of $\omega \times \omega$ which preserve the left coordinate. Namely, $\pi(i, j) = \langle i, j' \rangle$ for some j'. The action is the same as before, $\pi p(\pi(i, j), n) = p(i, j, n)$. So what we are doing is permuting each A_i "independently", while preserving the sequence of the A_i .

For example, we can force with $Add(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \to 2$, ordered by inverse inclusion. We define $\dot{a}_{i,j} = \{\langle p, \check{n} \rangle \mid p(i, j, n) = 1\}$, and we also define $\dot{A}_i = \{\dot{a}_{i,j} \mid j < \omega\}^{\bullet}$ and $\dot{A} = \langle \dot{A}_i \mid i < \omega \rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G} , will be those permutations of $\omega \times \omega$ which preserve the left coordinate. Namely, $\pi(i, j) = \langle i, j' \rangle$ for some j'. The action is the same as before, $\pi p(\pi(i, j), n) = p(i, j, n)$. So what we are doing is permuting each A_i "independently", while preserving the sequence of the A_i .

Finally, the filter of groups can be, for example, the one generated by $fix(E) = \{\pi \in \mathscr{G} \mid \pi \upharpoonright E \times \omega = id\}$ for $E \in [\omega]^{<\omega}$.

For example, we can force with $Add(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \to 2$, ordered by inverse inclusion. We define $\dot{a}_{i,j} = \{\langle p, \check{n} \rangle \mid p(i, j, n) = 1\}$, and we also define $\dot{A}_i = \{\dot{a}_{i,j} \mid j < \omega\}^{\bullet}$ and $\dot{A} = \langle \dot{A}_i \mid i < \omega \rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G} , will be those permutations of $\omega \times \omega$ which preserve the left coordinate. Namely, $\pi(i, j) = \langle i, j' \rangle$ for some j'. The action is the same as before, $\pi p(\pi(i, j), n) = p(i, j, n)$. So what we are doing is permuting each A_i "independently", while preserving the sequence of the A_i .

Finally, the filter of groups can be, for example, the one generated by $\operatorname{fix}(E) = \{\pi \in \mathscr{G} \mid \pi \upharpoonright E \times \omega = \operatorname{id}\}$ for $E \in [\omega]^{<\omega}$. Now it is not hard to show that $\dot{a}_{i,j}, \dot{A}_i, \dot{A} \in \mathsf{HS}$,

ヘロト ヘ戸ト ヘヨト ヘヨト

For example, we can force with $Add(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \to 2$, ordered by inverse inclusion. We define $\dot{a}_{i,j} = \{\langle p, \check{n} \rangle \mid p(i, j, n) = 1\}$, and we also define $\dot{A}_i = \{\dot{a}_{i,j} \mid j < \omega\}^{\bullet}$ and $\dot{A} = \langle \dot{A}_i \mid i < \omega \rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G} , will be those permutations of $\omega \times \omega$ which preserve the left coordinate. Namely, $\pi(i, j) = \langle i, j' \rangle$ for some j'. The action is the same as before, $\pi p(\pi(i, j), n) = p(i, j, n)$. So what we are doing is permuting each A_i "independently", while preserving the sequence of the A_i .

Finally, the filter of groups can be, for example, the one generated by $\operatorname{fix}(E) = \{\pi \in \mathscr{G} \mid \pi \upharpoonright E \times \omega = \operatorname{id}\}$ for $E \in [\omega]^{<\omega}$. Now it is not hard to show that $\dot{a}_{i,j}, \dot{A}_i, \dot{A} \in \mathsf{HS}$, and that indeed

 $\mathbb{1} \Vdash^{\mathsf{HS}}$ " \dot{A} does not admit a choice function".

イロト イヨト イヨト -

For example, we can force with $Add(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \to 2$, ordered by inverse inclusion. We define $\dot{a}_{i,j} = \{\langle p, \check{n} \rangle \mid p(i, j, n) = 1\}$, and we also define $\dot{A}_i = \{\dot{a}_{i,j} \mid j < \omega\}^{\bullet}$ and $\dot{A} = \langle \dot{A}_i \mid i < \omega \rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G} , will be those permutations of $\omega \times \omega$ which preserve the left coordinate. Namely, $\pi(i, j) = \langle i, j' \rangle$ for some j'. The action is the same as before, $\pi p(\pi(i, j), n) = p(i, j, n)$. So what we are doing is permuting each A_i "independently", while preserving the sequence of the A_i .

Finally, the filter of groups can be, for example, the one generated by $\operatorname{fix}(E) = \{\pi \in \mathscr{G} \mid \pi \upharpoonright E \times \omega = \operatorname{id}\}$ for $E \in [\omega]^{<\omega}$. Now it is not hard to show that $\dot{a}_{i,j}, \dot{A}_i, \dot{A} \in \mathsf{HS}$, and actually

$$\mathbb{1}\Vdash^{\mathsf{HS}}\dot{f}\colon \check{\omega}\to \bigcup_{i<\omega}\dot{A}_i\implies \exists n<\omega, \mathrm{rng}\,\dot{f}\subseteq \bigcup_{i< n}\dot{A}_i.$$

Part III Preservation Theorems

Asaf Karagila (Leeds)

Breaking and Preserving [Some] Choice

18 August 2022

Let $\langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ be a symmetric system. Suppose that \mathbb{P} is σ -closed and \mathscr{F} is σ -complete, then $\mathbb{1} \Vdash^{\mathsf{HS}} \mathsf{DC}$.

- N

A D > A A + A

Let $\langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ be a symmetric system. Suppose that \mathbb{P} is σ -closed and \mathscr{F} is σ -complete, then $\mathbb{1} \Vdash^{\mathsf{HS}} \mathsf{DC}$.

Remark

We can replace σ -closed by c.c.c., and in fact by just requiring properness.

24/29

Let $\langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ be a symmetric system. Suppose that \mathbb{P} is σ -closed and \mathscr{F} is σ -complete, then $\mathbb{1} \Vdash^{\mathsf{HS}} \mathsf{DC}$.

Remark

We can replace σ -closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in HS$ such that $p \Vdash^{HS}$ " \dot{T} is a tree without maximal nodes".

Let $\langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ be a symmetric system. Suppose that \mathbb{P} is σ -closed and \mathscr{F} is σ -complete, then $\mathbb{1} \Vdash^{\mathsf{HS}} \mathsf{DC}$.

Remark

We can replace σ -closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in HS$ such that $p \Vdash^{HS} "\dot{T}$ is a tree without maximal nodes". We define a sequence of conditions, p_n , and a sequence of names, \dot{t}_n , such that

Let $\langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ be a symmetric system. Suppose that \mathbb{P} is σ -closed and \mathscr{F} is σ -complete, then $\mathbb{1} \Vdash^{\mathsf{HS}} \mathsf{DC}$.

Remark

We can replace σ -closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in HS$ such that $p \Vdash^{HS}$ " \dot{T} is a tree without maximal nodes". We define a sequence of conditions, p_n , and a sequence of names, \dot{t}_n , such that $p_{n+1} \leq p_n$,

Let $\langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ be a symmetric system. Suppose that \mathbb{P} is σ -closed and \mathscr{F} is σ -complete, then $\mathbb{1} \Vdash^{\mathsf{HS}} \mathsf{DC}$.

Remark

We can replace σ -closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in HS$ such that $p \Vdash^{HS} "\dot{T}$ is a tree without maximal nodes". We define a sequence of conditions, p_n , and a sequence of names, \dot{t}_n , such that $p_{n+1} \leqslant p_n$, $p_{n+1} \Vdash^{HS} \dot{t}_n <_T \dot{t}_{n+1}$, and $\dot{t}_n \in HS$.

Let $\langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ be a symmetric system. Suppose that \mathbb{P} is σ -closed and \mathscr{F} is σ -complete, then $\mathbb{1} \Vdash^{\mathsf{HS}} \mathsf{DC}$.

Remark

We can replace σ -closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in HS$ such that $p \Vdash^{HS} ``\dot{T}$ is a tree without maximal nodes". We define a sequence of conditions, p_n , and a sequence of names, \dot{t}_n , such that $p_{n+1} \leqslant p_n$, $p_{n+1} \Vdash^{HS} \dot{t}_n <_T \dot{t}_{n+1}$, and $\dot{t}_n \in HS$. Since \mathbb{P} is σ -closed, let $q \leqslant p_n$ for all $n < \omega$;

Let $\langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ be a symmetric system. Suppose that \mathbb{P} is σ -closed and \mathscr{F} is σ -complete, then $\mathbb{1} \Vdash^{\mathsf{HS}} \mathsf{DC}$.

Remark

We can replace σ -closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in \mathsf{HS}$ such that $p \Vdash^{\mathsf{HS}} ``\dot{T}$ is a tree without maximal nodes". We define a sequence of conditions, p_n , and a sequence of names, \dot{t}_n , such that $p_{n+1} \leqslant p_n$, $p_{n+1} \Vdash^{\mathsf{HS}} \dot{t}_n <_T \dot{t}_{n+1}$, and $\dot{t}_n \in \mathsf{HS}$. Since \mathbb{P} is σ -closed, let $q \leqslant p_n$ for all $n < \omega$; since \mathscr{F} is σ -complete, $H = \bigcap_{n < \omega} \operatorname{sym}(\dot{t}_n) \in \mathscr{F}$.

Image: A matrix and a matrix

Let $\langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ be a symmetric system. Suppose that \mathbb{P} is σ -closed and \mathscr{F} is σ -complete, then $\mathbb{1} \Vdash^{\mathsf{HS}} \mathsf{DC}$.

Remark

We can replace σ -closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in \text{HS}$ such that $p \Vdash^{\text{HS}} ``\dot{T}$ is a tree without maximal nodes". We define a sequence of conditions, p_n , and a sequence of names, \dot{t}_n , such that $p_{n+1} \leqslant p_n$, $p_{n+1} \Vdash^{\text{HS}} \dot{t}_n <_T \dot{t}_{n+1}$, and $\dot{t}_n \in \text{HS}$. Since \mathbb{P} is σ -closed, let $q \leqslant p_n$ for all $n < \omega$; since \mathscr{F} is σ -complete, $H = \bigcap_{n < \omega} \operatorname{sym}(\dot{t}_n) \in \mathscr{F}$. But it is clear that $\{\dot{t}_n \mid n < \omega\}^{\bullet} \in \text{HS}$ since H is a subgroup of its stabiliser.

イロト イボト イヨト イヨト

Theorem

Let $\langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ be a symmetric system. Suppose that \mathbb{P} is σ -closed and \mathscr{F} is σ -complete, then $\mathbb{1} \Vdash^{\mathsf{HS}} \mathsf{DC}$.

Remark

We can replace σ -closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in \text{HS}$ such that $p \Vdash^{\text{HS}} ``\dot{T}$ is a tree without maximal nodes". We define a sequence of conditions, p_n , and a sequence of names, \dot{t}_n , such that $p_{n+1} \leqslant p_n$, $p_{n+1} \Vdash^{\text{HS}} \dot{t}_n <_T \dot{t}_{n+1}$, and $\dot{t}_n \in \text{HS}$. Since \mathbb{P} is σ -closed, let $q \leqslant p_n$ for all $n < \omega$; since \mathscr{F} is σ -complete, $H = \bigcap_{n < \omega} \operatorname{sym}(\dot{t}_n) \in \mathscr{F}$. But it is clear that $\{\dot{t}_n \mid n < \omega\}^{\bullet} \in \text{HS}$ since H is a subgroup of its stabiliser. And of course,

 $q \Vdash^{\mathsf{HS}} \{\dot{t}_n \mid n < \omega\}^{\bullet}$ is an infinite chain in \dot{T} .

< □ > < 同 > < 回 > < 回 > .

However, the context for setting it up is far too elaborate to set up.

However, the context for setting it up is far too elaborate to set up.

But as a curiosity, here is the theorem, in the particular case for AC_{ω} :

25/29

However, the context for setting it up is far too elaborate to set up.

But as a curiosity, here is the theorem, in the particular case for AC_{ω} :

Theorem (K.)

Let $\langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ be a mixable symmetric system admitting an absolute representative. Since $\check{\omega}$ is injective and densely measurable, $\mathbb{1} \Vdash^{\mathsf{HS}} \mathsf{AC}_{\omega}$.

What about BPI?

Ξ.

What about BPI?

Theorem

Suppose that $M \models$ SVC with X as a seed. The following are equivalent:

What about BPI?

Theorem

Suppose that $M \models$ SVC with X as a seed. The following are equivalent:

• $M \models \mathsf{BPI}.$

2 There is an ultrafilter on $X^{<\omega}$ containing $\{f \in X^{<\omega} \mid x \in \operatorname{rng} f\}$ for all $x \in X$.

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives?

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group).

27/29

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself?

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself? Clearly, many of the standard arguments will work by replacing $Add(\omega, X)$ by $Add(\kappa, X)$,

Image: A matrix and a matrix

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself? Clearly, many of the standard arguments will work by replacing $Add(\omega, X)$ by $Add(\kappa, X)$, or by adding Sacks,

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself? Clearly, many of the standard arguments will work by replacing $Add(\omega, X)$ by $Add(\kappa, X)$, or by adding Sacks, random,

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself? Clearly, many of the standard arguments will work by replacing $Add(\omega, X)$ by $Add(\kappa, X)$, or by adding Sacks, random, Hechler,

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself? Clearly, many of the standard arguments will work by replacing $Add(\omega, X)$ by $Add(\kappa, X)$, or by adding Sacks, random, Hechler, Laver,

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself? Clearly, many of the standard arguments will work by replacing $Add(\omega, X)$ by $Add(\kappa, X)$, or by adding Sacks, random, Hechler, Laver, or any other kind of generic reals.

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself? Clearly, many of the standard arguments will work by replacing $Add(\omega, X)$ by $Add(\kappa, X)$, or by adding Sacks, random, Hechler, Laver, or any other kind of generic reals. Or do they?

< □ > < □ > < □ > < □ > < □ < </p>

Thank you For Your attention!

Asaf Karagila (Leeds)

Breaking and Preserving [Some] Choice

18 August 2022

Some suggested reading...

- K., Iterating symmetric extensions. J. symb. log. 84 (2019), 123–159 (arXiv:1606.06718).
- K., Preserving Dependent Choice. Bulletin Polish Acad. Sci. Math. 67 (2019), 19–29 (arXiv:1810.11301).
- K., Realizing realizability results with classical constructions. Bull. symb. log. 25 (2019) 429–445 (arXiv:1905.08202).
- K.–Schweber, Choiceless Chain Conditions. Eur. J. Math., accepted for publication (arXiv:2106.03561).
- K.-Schilhan, Sequential and distributive forcings without choice. Under review (arXiv:2112.14103).

29/29