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Definition
The Principle of Dependent Choice (DC) states that if T is a tree, then T

has a maximal node or an infinite chain.

Proposition (ZF + DC)
Every infinite set has a countably infinite subset.

Proof.
Let X be an infinite set, and let T be the set of all injective finite
sequences of elements of X, ordered by end-extension.
Since X is infinite, T does not have any maximal nodes. If C ⊆ T is an
infinite chain, then

⋃
C is an injective function from ω into X.
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Theorem
The following are equivalent:

1 DC.

2 Suppose that A is a set and R is a relation on A with dom R = A, then
given any a0 ∈ A, there is a function f : ω → A such that f(0) = a0 and
f(n) R f(n + 1).

3 The Baire Category Theorem.
4 If P is a σ-closed forcing, then P is σ-distributive.
5 Downwards Löwenheim–Skolem Theorem for countable languages.
6 Rasiowa–Sikorski Theorem.
7 A partial order P is well-founded if and only if it does not have infinite

descending chains.
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Definition
The Axiom of Countable Choice (ACω) states that if {An | n < ω} is a
family of non-empty sets, then there is a function f with domain ω, and
f(n) ∈ An for all n < ω.

Proposition
DC =⇒ ACω.

Proof.
Let {An | n < ω} be a family of non-empty sets. Consider the tree T such
that t ∈ T if and only if there is some n < ω such that t is a choice function
from {Ai | i < n}, ordered by end-extension.

Remark
The inverse implication does not hold. Namely, it is consistent with ZF that
ACω holds, but DC fails.
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Proposition (ZF + ACω)
Every infinite set has a countably infinite subset.

Proof.
Let X be an infinite set, let An = {f : n + 1 → X | f is injective} for all
n < ω. Let f be a choice function from {An | n < ω} and let fn = f(n).
We define x0 = f0(0); and let xn+1 be the least fm(k) which is not any of
the xi for i < n, for whatever m.

Note that for any given n, fi for i < n can only enumerate less than n! + 1
elements, so by going to fn!+1 we are guaranteed to find a suitable
candidate for xn+1.

Remark
The statement that every infinite set has a countably infinite subset is weaker
than ACω. It is equivalent to the statement “If {Ai | i ∈ I} is a family of sets
which are co-finite subsets of

⋃
Ai, then it admits a choice function.”
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Theorem
The following are equivalent:

1 ACω.

2 If {An | n < ω} is a family of non-empty sets, then there is an infinite
I ⊆ ω such that {Ai | i ∈ I} admits a choice function.

3 Countable sums of Lindelöf spaces are Lindelöf.
4 Countable sums of separable spaces are separable.
5 If X is a metric space and A ⊆ X , then cl(A) = lim(A).
6 If f is a function between two metric spaces, then f is continuous if and

only if it is sequentially continuous.
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Definition
The Boolean Prime Ideal Theorem (BPI) states that if B is a Boolean
algebra, then B contains a prime ideal.

Proposition
BPI =⇒ every filter can be extended to an ultrafilter (Ultrafilter Lemma).

Proof.
If F is a filter on a set X, consider the Boolean algebra P(X)/F . By BPI it
has a prime ideal, I. Define A ∈ U ⇐⇒ [X \ A]F ∈ I, then U is a filter
extending F . Moreover, U is an ultrafilter, since for Boolean algebras
prime ideals are maximal, and so either [A]F ∈ I or [X \ A]F ∈ I.

Remark
The reverse implication holds. Namely, the Ultrafilter Lemma implies the
Boolean Prime Ideal Theorem.
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Boolean Prime Ideal Theorem.
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Theorem (ZF + BPI)
Every set can be linearly ordered.

Proof.
Let X be an infinite set, and let S(X) be the set of finite injective
sequences from X. Let U be an ultrafilter on S(X) containing all the sets
Ax = {f ∈ S(X) | x ∈ rng f} for x ∈ X. Define

x < y ⇐⇒ {f ∈ S(X) | f−1(x) < f−1(y)} ∈ U.

This relation is easily irreflexive. If x < y and y < z, let A and B be in U to
witness those respectively. Then for f ∈ A ∩ B it is true that
f−1(x) < f−1(y) < f−1(z). Finally, given any x, y ∈ X, then Ax ∩ Ay ∈ U ,
and so exactly one of {f ∈ S(X) | f−1(x) < f−1(y)} and
{f ∈ S(X) | f−1(y) < f−1(x)} is in U .

Remark
BPI is consistent with the existence of an infinite set without a countably
infinite subset! It is in fact independent of DC and ACω!
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Theorem
The following are equivalent:

1 BPI.

2 The Ultrafilter Lemma.
3 The compactness theorem for first-order logic.
4 The completeness theorem for first-order logic.
5 Banach–Alaoglu Theorem.
6 The product of compact Hausdorff spaces is a compact Hausdorff space.
7 2I is compact for any set I , where 2 is discrete.
8 If R is a commutative ring with a unit, then every ideal is contained in a

prime ideal.
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Part II
Symmetric Systems
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Let P be a notion of forcing.

If π is an automorphism of P, then π acts on
the P-names by the following recursive definition:

πẋ = {⟨πp, πẏ⟩ | ⟨p, ẏ⟩ ∈ ẋ}.

Proposition
If x is in the ground model, then πx̌ = x̌.

Proof.
By ∈-recursion on x. Recall that x̌ = {⟨1, y̌⟩ | y ∈ x}. Since π1 = 1 and by
the recursion hypothesis πy̌ = y̌ for all y ∈ x the result follows.

Lemma (The Symmetry Lemma)
p ⊩ φ(ẋ) ⇐⇒ πp ⊩ φ(πẋ).
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Asaf Karagila (Leeds) Breaking and Preserving [Some] Choice 18 August 2022 12 / 29



Let P be a notion of forcing. If π is an automorphism of P, then π acts on
the P-names by the following recursive definition:
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Proposition
If x is in the ground model, then πx̌ = x̌.

Proof.
By ∈-recursion on x. Recall that x̌ = {⟨1, y̌⟩ | y ∈ x}. Since π1 = 1 and by
the recursion hypothesis πy̌ = y̌ for all y ∈ x the result follows.

Lemma (The Symmetry Lemma)
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Definition
Let G be a group. We say that F is a filter of subgroups on G if it is a
non-empty collection of subgroups of G which is closed under finite
intersections and supergroups.

We say that F is a normal filter of subgroup if whenever π ∈ G and
H ∈ F , then πHπ−1 ∈ F .

We say that ⟨P, G , F ⟩ is a symmetric system when P is a notion of
forcing, G is a group of automorphisms of P, and F is a normal filter of
subgroups on G .
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Let ⟨P, G , F ⟩ be a symmetric system.

A P-name, ẋ, is F -symmetric if
symG (ẋ) ∈ F , where

symG (ẋ) = {π ∈ G | πẋ = ẋ}.

If this property holds hereditarily for all the names that appear in ẋ, we
say that ẋ is hereditarily F -symmetric.

Proposition
symG (πẋ) = π symG (ẋ)π−1.Consequently, if ẋ is F -symmetric, then for all
π ∈ G , πẋ is F -symmetric as well.

We denote by HSF the class of all hereditarily F -symmetric names.
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symG (ẋ) ∈ F , where
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Theorem
Let G be a V -generic filter, then M = {ẋG | ẋ ∈ HSF } = HSG

F is a transitive
class in V [G] which contains V , and M |= ZF.

We call such M a symmetric extension of V . We also have a forcing
relation, ⊩HS which is the relativisation of ⊩ to HSF , this relation behaves
exactly as expected.

It even satisfies a version of the Symmetry Lemma when we restrict the
automorphisms to the group G .

We will omit the subscripts from here on end, since the symmetric system
will be clear from context.
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Definition
We say that M satisfies Small Violations of Choice (SVC) if there is some
X such that for any set Y there is some ordinal α and a surjection from
X × α onto Y .

We call such X a seed.

Theorem
M is a model of SVC if and only if M is a symmetric extension of some model
of ZFC.

Theorem
M |= SVC if and only if M = V (x) for some V |= ZFC and x ∈ M .

Let’s see an example. . .
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Let P be the forcing Add(ω, ω1).

The conditions, therefore, are finite
functions p : ω1 × ω → 2, ordered by reverse inclusion. We will denote by
ȧα the αth real:

ȧα = {⟨p, ň⟩ | p(α, n) = 1}.

We will also denote by Ȧ = {ȧα | α < ω1}• = {⟨1, ȧα⟩ | α < ω1}.

Our group of permutations are going to be the permutations of ω1 which
act on P in the following way:

πp(πα, n) = p(α, n).

Proposition
πȧα = ȧπα. Consequently, πȦ = Ȧ for all π ∈ G .

Proof.
πp(πα, n) = p(α, n) by definition of the action of π. Therefore, πp(πα, n) = 1
if and only if p(α, n) = 1, and the equality follows.
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Digression!

If {ẋi | i ∈ I} is a collection of names, we use {ẋi | i ∈ I}• to denote the
obvious name they define:

{⟨1, ẋi⟩ | i ∈ I}.

This notation extends naturally to ordered pairs and functions, etc. For
example, it simplifies x̌ = {y̌ | y ∈ x}•.

Asaf Karagila (Leeds) Breaking and Preserving [Some] Choice 18 August 2022 18 / 29



Digression!
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πȧα = ȧπα.
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The filter F is defined to be generated by groups of the form
fix(E) = {π ∈ G | π ↾ E = id}, where E ⊆ ω1 is a countable set.

The previous proposition tells us that ȧα ∈ HS for all α, since fix({α}) ∈ F ,
and therefore also Ȧ ∈ HS.

Proposition
1 ⊩HS Ȧ cannot be well-ordered.

Proof.
Suppose that ḟ ∈ HS is a name such that some p ⊩HS ḟ : Ȧ → κ̌. Let E be
such that fix(E) ⊆ sym(ḟ). Let q ⩽ p be some condition that for some
α /∈ E, q ⊩HS ḟ(ȧα) = ξ̌. Let β be an ordinal which is not mentioned in E or
q, and consider the cycle π = (α β). Then πq is compatible with q, and
πq ⊩HS πḟ(πȧα) = πξ̌. Simplifying this, we get πq ⊩HS ḟ(ȧβ) = ξ̌.
Since q and πq are compatible, q could not have forced that ḟ is injective,
and the same holds for p. But p and ḟ were arbitrary so 1 must force that
nno such injective ḟ can exist.
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Proposition
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and the same holds for p. But p and ḟ were arbitrary so 1 must force that
nno such injective ḟ can exist.
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Proof.
Suppose that ḟ ∈ HS is a name such that some p ⊩HS ḟ : Ȧ → κ̌. Let E be
such that fix(E) ⊆ sym(ḟ). Let q ⩽ p be some condition that for some
α /∈ E, q ⊩HS ḟ(ȧα) = ξ̌. Let β be an ordinal which is not mentioned in E or
q, and consider the cycle π = (α β). Then πq is compatible with q,

and
πq ⊩HS πḟ(πȧα) = πξ̌. Simplifying this, we get πq ⊩HS ḟ(ȧβ) = ξ̌.
Since q and πq are compatible, q could not have forced that ḟ is injective,
and the same holds for p. But p and ḟ were arbitrary so 1 must force that
nno such injective ḟ can exist.
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such that fix(E) ⊆ sym(ḟ). Let q ⩽ p be some condition that for some
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This is a fairly simplistic symmetric system.

But we can do more
complicated things.

We can put a structure on ω1 and only look at automorphisms of that
structure.

We can allow the filter be generated by a different class of sets. Etc.

The general idea is that the group preserves structure and the filter
of groups preserve subsets.

While not entirely accurate, this is a good approximation for the truth.
And if you take one thing from this, take that.
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If we wanted to violate ACω, we would like to have added a countable
sequence of sets without a choice function.

For example, we can force with Add(ω, ω × ω), where the conditions are
finite partial functions p : ω × ω × ω → 2, ordered by inverse inclusion. We
define ȧi,j = {⟨p, ň⟩ | p(i, j, n) = 1}, and we also define Ȧi = {ȧi,j | j < ω}•

and Ȧ =
〈
Ȧi | i < ω

〉•.

This time the group of automorphisms, G , will be those permutations of
ω × ω which preserve the left coordinate. Namely, π(i, j) = ⟨i, j′⟩ for some
j′. The action is the same as before, πp(π(i, j), n) = p(i, j, n). So what we
are doing is permuting each Ai “independently”, while preserving the
sequence of the Ai.

Finally, the filter of groups can be, for example, the one generated by
fix(E) = {π ∈ G | π ↾ E × ω = id} for E ∈ [ω]<ω. Now it is not hard to show
that ȧi,j , Ȧi, Ȧ ∈ HS, and that indeed

1 ⊩HS “Ȧ does not admit a choice function”.
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Ȧi | i < ω

〉•.

This time the group of automorphisms, G , will be those permutations of
ω × ω which preserve the left coordinate.

Namely, π(i, j) = ⟨i, j′⟩ for some
j′. The action is the same as before, πp(π(i, j), n) = p(i, j, n). So what we
are doing is permuting each Ai “independently”, while preserving the
sequence of the Ai.

Finally, the filter of groups can be, for example, the one generated by
fix(E) = {π ∈ G | π ↾ E × ω = id} for E ∈ [ω]<ω. Now it is not hard to show
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that ȧi,j , Ȧi, Ȧ ∈ HS, and that indeed
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define ȧi,j = {⟨p, ň⟩ | p(i, j, n) = 1}, and we also define Ȧi = {ȧi,j | j < ω}•
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⋃
i<n

Ȧi.
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Part III
Preservation Theorems
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Theorem
Let ⟨P, G , F ⟩ be a symmetric system. Suppose that P is σ-closed and F is
σ-complete, then 1 ⊩HS DC.

Remark
We can replace σ-closed by c.c.c., and in fact by just requiring properness.

Proof.
Suppose that Ṫ ∈ HS such that p ⊩HS “Ṫ is a tree without maximal nodes”.
We define a sequence of conditions, pn, and a sequence of names, ṫn,
such that pn+1 ⩽ pn, pn+1 ⊩HS ṫn <T ṫn+1, and ṫn ∈ HS.
Since P is σ-closed, let q ⩽ pn for all n < ω; since F is σ-complete,
H =

⋂
n<ω sym(ṫn) ∈ F . But it is clear that {ṫn | n < ω}• ∈ HS since H is a

subgroup of its stabiliser. And of course,

q ⊩HS {ṫn | n < ω}• is an infinite chain in Ṫ .
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such that

pn+1 ⩽ pn, pn+1 ⊩HS ṫn <T ṫn+1, and ṫn ∈ HS.
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Since P is σ-closed, let q ⩽ pn for all n < ω;

since F is σ-complete,
H =

⋂
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We define a sequence of conditions, pn, and a sequence of names, ṫn,
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We have a preservation theorem for ACω, and in fact for a broader family
of indices.

However, the context for setting it up is far too elaborate to set up.

But as a curiosity, here is the theorem, in the particular case for ACω:

Theorem (K.)
Let ⟨P, G , F ⟩ be a mixable symmetric system admitting an absolute
representative. Since ω̌ is injective and densely measurable, 1 ⊩HS ACω.

Asaf Karagila (Leeds) Breaking and Preserving [Some] Choice 18 August 2022 25 / 29



We have a preservation theorem for ACω, and in fact for a broader family
of indices.

However, the context for setting it up is far too elaborate to set up.

But as a curiosity, here is the theorem, in the particular case for ACω:

Theorem (K.)
Let ⟨P, G , F ⟩ be a mixable symmetric system admitting an absolute
representative. Since ω̌ is injective and densely measurable, 1 ⊩HS ACω.

Asaf Karagila (Leeds) Breaking and Preserving [Some] Choice 18 August 2022 25 / 29



We have a preservation theorem for ACω, and in fact for a broader family
of indices.

However, the context for setting it up is far too elaborate to set up.

But as a curiosity, here is the theorem, in the particular case for ACω:

Theorem (K.)
Let ⟨P, G , F ⟩ be a mixable symmetric system admitting an absolute
representative. Since ω̌ is injective and densely measurable, 1 ⊩HS ACω.

Asaf Karagila (Leeds) Breaking and Preserving [Some] Choice 18 August 2022 25 / 29



We have a preservation theorem for ACω, and in fact for a broader family
of indices.

However, the context for setting it up is far too elaborate to set up.

But as a curiosity, here is the theorem, in the particular case for ACω:

Theorem (K.)
Let ⟨P, G , F ⟩ be a mixable symmetric system admitting an absolute
representative. Since ω̌ is injective and densely measurable, 1 ⊩HS ACω.

Asaf Karagila (Leeds) Breaking and Preserving [Some] Choice 18 August 2022 25 / 29



What about BPI?

Theorem
Suppose that M |= SVC with X as a seed. The following are equivalent:

1 M |= BPI.
2 There is an ultrafilter on X<ω containing {f ∈ X<ω | x ∈ rng f} for all

x ∈ X .
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Question
Is there an equivalent condition, or even just a “usable condition” for
preserving ACω and its relatives?

What about BPI?

Remark
In the context of permutation models, defined for ZF with atoms, we do have
an equivalent condition for preserving BPI, which is the filter of subgroups is
Ramsey in a nontrivial way (equivalently, the topology defined from the filter
gives rise to an extremely amenable and non-trivial group). But it is not clear
how this translates to ZF and symmetric extensions.

Question
How much are these conditions depend on the forcing itself? Clearly, many of
the standard arguments will work by replacing Add(ω, X) by Add(κ, X), or by
adding Sacks, random, Hechler, Laver, or any other kind of generic reals. Or
do they?
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Thank you
For

Your attention!
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Some suggested reading. . .
1 K., Iterating symmetric extensions. J. symb. log. 84 (2019), 123–159

(arXiv:1606.06718).
2 K., Preserving Dependent Choice. Bulletin Polish Acad. Sci. Math. 67

(2019), 19–29 (arXiv:1810.11301).
3 K., Realizing realizability results with classical constructions. Bull.

symb. log. 25 (2019) 429–445 (arXiv:1905.08202).
4 K.–Schweber, Choiceless Chain Conditions. Eur. J. Math., accepted for

publication (arXiv:2106.03561).
5 K.–Schilhan, Sequential and distributive forcings without choice.

Under review (arXiv:2112.14103).
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