Breaking and Preserving [Some] Choice

Asaf Karagila

University of Leeds

18 August 2022

Young Set Theory Workshop 2020

Breaking and Preserving [Some] Choice

Asaf Karagila

University of Leeds

18 August 2022

Young Set Theory Workshop 20202022

Part I Weak Choice Principles

Definition

The Principle of Dependent Choice (DC) states that if T is a tree, then T has a maximal node or an infinite chain.

Definition

The Principle of Dependent Choice (DC) states that if T is a tree, then T has a maximal node or an infinite chain.

Proposition (ZF + DC)

Every infinite set has a countably infinite subset.

Definition

The Principle of Dependent Choice (DC) states that if T is a tree, then T has a maximal node or an infinite chain.

Proposition (ZF + DC)

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, and let T be the set of all injective finite sequences of elements of X, ordered by end-extension.

Definition

The Principle of Dependent Choice (DC) states that if T is a tree, then T has a maximal node or an infinite chain.

Proposition (ZF + DC)

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, and let T be the set of all injective finite sequences of elements of X, ordered by end-extension. Since X is infinite, T does not have any maximal nodes.

Definition

The Principle of Dependent Choice (DC) states that if T is a tree, then T has a maximal node or an infinite chain.

Proposition (ZF + DC)

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, and let T be the set of all injective finite sequences of elements of X, ordered by end-extension. Since X is infinite, T does not have any maximal nodes. If $C \subseteq T$ is an infinite chain, then $\bigcup C$ is an injective function from ω into X.

Theorem

The following are equivalent:

- DC.

Theorem

The following are equivalent:
(1) DC.
(2) Suppose that A is a set and R is a relation on A with $\operatorname{dom} R=A$, then given any $a_{0} \in A$, there is a function $f: \omega \rightarrow A$ such that $f(0)=a_{0}$ and $f(n) R f(n+1)$.

Theorem

The following are equivalent:

- DC.
(2) Suppose that A is a set and R is a relation on A with $\operatorname{dom} R=A$, then given any $a_{0} \in A$, there is a function $f: \omega \rightarrow A$ such that $f(0)=a_{0}$ and $f(n) R f(n+1)$.
(3) The Baire Category Theorem.

Theorem

The following are equivalent:
(1) DC.
(2) Suppose that A is a set and R is a relation on A with $\operatorname{dom} R=A$, then given any $a_{0} \in A$, there is a function $f: \omega \rightarrow A$ such that $f(0)=a_{0}$ and $f(n) R f(n+1)$.
(3) The Baire Category Theorem.
(3) If \mathbb{P} is a σ-closed forcing, then \mathbb{P} is σ-distributive.

Theorem

The following are equivalent:
(1) DC.
(2) Suppose that A is a set and R is a relation on A with $\operatorname{dom} R=A$, then given any $a_{0} \in A$, there is a function $f: \omega \rightarrow A$ such that $f(0)=a_{0}$ and $f(n) R f(n+1)$.
(3) The Baire Category Theorem.
(9) If \mathbb{P} is a σ-closed forcing, then \mathbb{P} is σ-distributive.
(5) Downwards Löwenheim-Skolem Theorem for countable languages.

Theorem

The following are equivalent:
(1) DC.
(2) Suppose that A is a set and R is a relation on A with $\operatorname{dom} R=A$, then given any $a_{0} \in A$, there is a function $f: \omega \rightarrow A$ such that $f(0)=a_{0}$ and $f(n) R f(n+1)$.
(3) The Baire Category Theorem.
(4) If \mathbb{P} is a σ-closed forcing, then \mathbb{P} is σ-distributive.
(5) Downwards Löwenheim-Skolem Theorem for countable languages.
(6) Rasiowa-Sikorski Theorem.

Theorem

The following are equivalent:

- DC.
(2) Suppose that A is a set and R is a relation on A with $\operatorname{dom} R=A$, then given any $a_{0} \in A$, there is a function $f: \omega \rightarrow A$ such that $f(0)=a_{0}$ and $f(n) R f(n+1)$.
(3) The Baire Category Theorem.
(9) If \mathbb{P} is a σ-closed forcing, then \mathbb{P} is σ-distributive.
(5) Downwards Löwenheim-Skolem Theorem for countable languages.
(6) Rasiowa-Sikorski Theorem.
(1) A partial order P is well-founded if and only if it does not have infinite descending chains.

Definition

The Axiom of Countable Choice $\left(\mathrm{AC}_{\omega}\right)$ states that if $\left\{A_{n} \mid n<\omega\right\}$ is a family of non-empty sets, then there is a function f with domain ω, and $f(n) \in A_{n}$ for all $n<\omega$.

Definition

The Axiom of Countable Choice (AC_{ω}) states that if $\left\{A_{n} \mid n<\omega\right\}$ is a family of non-empty sets, then there is a function f with domain ω, and $f(n) \in A_{n}$ for all $n<\omega$.

Proposition

$D C \Longrightarrow A C_{\omega}$.

Definition

The Axiom of Countable Choice (AC_{ω}) states that if $\left\{A_{n} \mid n<\omega\right\}$ is a family of non-empty sets, then there is a function f with domain ω, and $f(n) \in A_{n}$ for all $n<\omega$.

Proposition

$D C \Longrightarrow A C_{\omega}$.

Proof.

Let $\left\{A_{n} \mid n<\omega\right\}$ be a family of non-empty sets. Consider the tree T such that $t \in T$ if and only if there is some $n<\omega$ such that t is a choice function from $\left\{A_{i} \mid i<n\right\}$, ordered by end-extension.

Definition

The Axiom of Countable Choice (AC_{ω}) states that if $\left\{A_{n} \mid n<\omega\right\}$ is a family of non-empty sets, then there is a function f with domain ω, and $f(n) \in A_{n}$ for all $n<\omega$.

Proposition

$D C \Longrightarrow A C_{\omega}$.

Proof.

Let $\left\{A_{n} \mid n<\omega\right\}$ be a family of non-empty sets. Consider the tree T such that $t \in T$ if and only if there is some $n<\omega$ such that t is a choice function from $\left\{A_{i} \mid i<n\right\}$, ordered by end-extension.

Remark

The inverse implication does not hold.

Definition

The Axiom of Countable Choice $\left(\mathrm{AC}_{\omega}\right)$ states that if $\left\{A_{n} \mid n<\omega\right\}$ is a family of non-empty sets, then there is a function f with domain ω, and $f(n) \in A_{n}$ for all $n<\omega$.

Proposition

$D C \Longrightarrow A C_{\omega}$.

Proof.

Let $\left\{A_{n} \mid n<\omega\right\}$ be a family of non-empty sets. Consider the tree T such that $t \in T$ if and only if there is some $n<\omega$ such that t is a choice function from $\left\{A_{i} \mid i<n\right\}$, ordered by end-extension.

Remark

The inverse implication does not hold. Namely, it is consistent with ZF that AC_{ω} holds, but DC fails.

Proposition $\left(\mathrm{ZF}+\mathrm{AC}_{\omega}\right)$

Every infinite set has a countably infinite subset.

Proposition $\left(\mathrm{ZF}+\mathrm{AC}_{\omega}\right)$

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set,

Proposition $\left(\mathrm{ZF}+\mathrm{AC}_{\omega}\right)$

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, let $A_{n}=\{f: n+1 \rightarrow X \mid f$ is injective $\}$ for all $n<\omega$.

Proposition $\left(\mathrm{ZF}+\mathrm{AC}_{\omega}\right)$

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, let $A_{n}=\{f: n+1 \rightarrow X \mid f$ is injective $\}$ for all $n<\omega$. Let f be a choice function from $\left\{A_{n} \mid n<\omega\right\}$ and let $f_{n}=f(n)$.

Proposition (ZF $+\mathrm{AC}_{\omega}$)

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, let $A_{n}=\{f: n+1 \rightarrow X \mid f$ is injective $\}$ for all $n<\omega$. Let f be a choice function from $\left\{A_{n} \mid n<\omega\right\}$ and let $f_{n}=f(n)$. We define $x_{0}=f_{0}(0)$; and let x_{n+1} be the least $f_{m}(k)$ which is not any of the x_{i} for $i<n$, for whatever m.

Proposition (ZF $+\mathrm{AC}_{\omega}$)

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, let $A_{n}=\{f: n+1 \rightarrow X \mid f$ is injective $\}$ for all $n<\omega$. Let f be a choice function from $\left\{A_{n} \mid n<\omega\right\}$ and let $f_{n}=f(n)$. We define $x_{0}=f_{0}(0)$; and let x_{n+1} be the least $f_{m}(k)$ which is not any of the x_{i} for $i<n$, for whatever m.

Note that for any given n, f_{i} for $i<n$ can only enumerate less than $n!+1$ elements, so by going to $f_{n!+1}$ we are guaranteed to find a suitable candidate for x_{n+1}.

Proposition (ZF $+\mathrm{AC}_{\omega}$)

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, let $A_{n}=\{f: n+1 \rightarrow X \mid f$ is injective $\}$ for all $n<\omega$. Let f be a choice function from $\left\{A_{n} \mid n<\omega\right\}$ and let $f_{n}=f(n)$. We define $x_{0}=f_{0}(0)$; and let x_{n+1} be the least $f_{m}(k)$ which is not any of the x_{i} for $i<n$, for whatever m.

Note that for any given n, f_{i} for $i<n$ can only enumerate less than $n!+1$ elements, so by going to $f_{n!+1}$ we are guaranteed to find a suitable candidate for x_{n+1}.

Remark

The statement that every infinite set has a countably infinite subset is weaker than AC_{ω}.

Proposition (ZF $+\mathrm{AC}_{\omega}$)

Every infinite set has a countably infinite subset.

Proof.

Let X be an infinite set, let $A_{n}=\{f: n+1 \rightarrow X \mid f$ is injective $\}$ for all $n<\omega$. Let f be a choice function from $\left\{A_{n} \mid n<\omega\right\}$ and let $f_{n}=f(n)$. We define $x_{0}=f_{0}(0)$; and let x_{n+1} be the least $f_{m}(k)$ which is not any of the x_{i} for $i<n$, for whatever m.

Note that for any given n, f_{i} for $i<n$ can only enumerate less than $n!+1$ elements, so by going to $f_{n!+1}$ we are guaranteed to find a suitable candidate for x_{n+1}.

Remark

The statement that every infinite set has a countably infinite subset is weaker than AC_{ω}. It is equivalent to the statement "If $\left\{A_{i} \mid i \in I\right\}$ is a family of sets which are co-finite subsets of $\bigcup A_{i}$, then it admits a choice function."

Theorem
The following are equivalent:
(1) AC_{ω}.

Theorem

The following are equivalent:
(1) AC_{ω}.
(2) If $\left\{A_{n} \mid n<\omega\right\}$ is a family of non-empty sets, then there is an infinite $I \subseteq \omega$ such that $\left\{A_{i} \mid i \in I\right\}$ admits a choice function.

Theorem

The following are equivalent:
(1) AC_{ω}.
(2) If $\left\{A_{n} \mid n<\omega\right\}$ is a family of non-empty sets, then there is an infinite $I \subseteq \omega$ such that $\left\{A_{i} \mid i \in I\right\}$ admits a choice function.
(3) Countable sums of Lindelöf spaces are Lindelöf.

Theorem

The following are equivalent:
(1) AC_{ω}.
(2) If $\left\{A_{n} \mid n<\omega\right\}$ is a family of non-empty sets, then there is an infinite $I \subseteq \omega$ such that $\left\{A_{i} \mid i \in I\right\}$ admits a choice function.
(3) Countable sums of Lindelöf spaces are Lindelöf.
(4) Countable sums of separable spaces are separable.

Theorem

The following are equivalent:
(1) AC_{ω}.
(2) If $\left\{A_{n} \mid n<\omega\right\}$ is a family of non-empty sets, then there is an infinite $I \subseteq \omega$ such that $\left\{A_{i} \mid i \in I\right\}$ admits a choice function.
(3) Countable sums of Lindelöf spaces are Lindelöf.
(4) Countable sums of separable spaces are separable.
(5) If X is a metric space and $A \subseteq X$, then $\operatorname{cl}(A)=\lim (A)$.

Theorem

The following are equivalent:
(1) AC_{ω}.
(2) If $\left\{A_{n} \mid n<\omega\right\}$ is a family of non-empty sets, then there is an infinite $I \subseteq \omega$ such that $\left\{A_{i} \mid i \in I\right\}$ admits a choice function.
(3) Countable sums of Lindelöf spaces are Lindelöf.
(4) Countable sums of separable spaces are separable.
(5) If X is a metric space and $A \subseteq X$, then $\operatorname{cl}(A)=\lim (A)$.
(6) If f is a function between two metric spaces, then f is continuous if and only if it is sequentially continuous.

Definition

The Boolean Prime Ideal Theorem (BPI) states that if B is a Boolean algebra, then B contains a prime ideal.

Definition

The Boolean Prime Ideal Theorem (BPI) states that if B is a Boolean algebra, then B contains a prime ideal.

Proposition

BPI \Longrightarrow every filter can be extended to an ultrafilter (Ultrafilter Lemma).

Definition

The Boolean Prime Ideal Theorem (BPI) states that if B is a Boolean algebra, then B contains a prime ideal.

Proposition

BPI \Longrightarrow every filter can be extended to an ultrafilter (Ultrafilter Lemma).

Proof.

If F is a filter on a set X, consider the Boolean algebra $\mathcal{P}(X) / F$.

Definition

The Boolean Prime Ideal Theorem (BPI) states that if B is a Boolean algebra, then B contains a prime ideal.

Proposition

BPI \Longrightarrow every filter can be extended to an ultrafilter (Ultrafilter Lemma).

Proof.

If F is a filter on a set X, consider the Boolean algebra $\mathcal{P}(X) / F$. By BPI it has a prime ideal, I.

Definition

The Boolean Prime Ideal Theorem (BPI) states that if B is a Boolean algebra, then B contains a prime ideal.

Proposition

BPI \Longrightarrow every filter can be extended to an ultrafilter (Ultrafilter Lemma).

Proof.

If F is a filter on a set X, consider the Boolean algebra $\mathcal{P}(X) / F$. By BPI it has a prime ideal, I. Define $A \in U \Longleftrightarrow[X \backslash A]_{F} \in I$,

Definition

The Boolean Prime Ideal Theorem (BPI) states that if B is a Boolean algebra, then B contains a prime ideal.

Proposition

BPI \Longrightarrow every filter can be extended to an ultrafilter (Ultrafilter Lemma).

Proof.

If F is a filter on a set X, consider the Boolean algebra $\mathcal{P}(X) / F$. By BPI it has a prime ideal, I. Define $A \in U \Longleftrightarrow[X \backslash A]_{F} \in I$, then U is a filter extending F.

Definition

The Boolean Prime Ideal Theorem (BPI) states that if B is a Boolean algebra, then B contains a prime ideal.

Proposition

BPI \Longrightarrow every filter can be extended to an ultrafilter (Ultrafilter Lemma).

Proof.

If F is a filter on a set X, consider the Boolean algebra $\mathcal{P}(X) / F$. By BPI it has a prime ideal, I. Define $A \in U \Longleftrightarrow[X \backslash A]_{F} \in I$, then U is a filter extending F. Moreover, U is an ultrafilter, since for Boolean algebras prime ideals are maximal, and so either $[A]_{F} \in I$ or $[X \backslash A]_{F} \in I$.

Definition

The Boolean Prime Ideal Theorem (BPI) states that if B is a Boolean algebra, then B contains a prime ideal.

Proposition

BPI \Longrightarrow every filter can be extended to an ultrafilter (Ultrafilter Lemma).

Proof.

If F is a filter on a set X, consider the Boolean algebra $\mathcal{P}(X) / F$. By BPI it has a prime ideal, I. Define $A \in U \Longleftrightarrow[X \backslash A]_{F} \in I$, then U is a filter extending F. Moreover, U is an ultrafilter, since for Boolean algebras prime ideals are maximal, and so either $[A]_{F} \in I$ or $[X \backslash A]_{F} \in I$.

Remark

The reverse implication holds. Namely, the Ultrafilter Lemma implies the Boolean Prime Ideal Theorem.

Theorem (ZF + BPI)
Every set can be linearly ordered.

Theorem (ZF + BPI)

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let $S(X)$ be the set of finite injective sequences from X.

Theorem (ZF + BPI)

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let $S(X)$ be the set of finite injective sequences from X. Let U be an ultrafilter on $S(X)$ containing all the sets $A_{x}=\{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$.

Theorem (ZF + BPI)

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let $S(X)$ be the set of finite injective sequences from X. Let U be an ultrafilter on $S(X)$ containing all the sets $A_{x}=\{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$. Define

$$
x<y \Longleftrightarrow\left\{f \in S(X) \mid f^{-1}(x)<f^{-1}(y)\right\} \in U .
$$

Theorem (ZF + BPI)

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let $S(X)$ be the set of finite injective sequences from X. Let U be an ultrafilter on $S(X)$ containing all the sets $A_{x}=\{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$. Define

$$
x<y \Longleftrightarrow\left\{f \in S(X) \mid f^{-1}(x)<f^{-1}(y)\right\} \in U
$$

This relation is easily irreflexive.

Theorem (ZF + BPI)

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let $S(X)$ be the set of finite injective sequences from X. Let U be an ultrafilter on $S(X)$ containing all the sets $A_{x}=\{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$. Define

$$
x<y \Longleftrightarrow\left\{f \in S(X) \mid f^{-1}(x)<f^{-1}(y)\right\} \in U .
$$

This relation is easily irreflexive. If $x<y$ and $y<z$, let A and B be in U to witness those respectively.

Theorem (ZF + BPI)

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let $S(X)$ be the set of finite injective sequences from X. Let U be an ultrafilter on $S(X)$ containing all the sets $A_{x}=\{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$. Define

$$
x<y \Longleftrightarrow\left\{f \in S(X) \mid f^{-1}(x)<f^{-1}(y)\right\} \in U .
$$

This relation is easily irreflexive. If $x<y$ and $y<z$, let A and B be in U to witness those respectively. Then for $f \in A \cap B$ it is true that $f^{-1}(x)<f^{-1}(y)<f^{-1}(z)$.

Theorem (ZF + BPI)

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let $S(X)$ be the set of finite injective sequences from X. Let U be an ultrafilter on $S(X)$ containing all the sets $A_{x}=\{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$. Define

$$
x<y \Longleftrightarrow\left\{f \in S(X) \mid f^{-1}(x)<f^{-1}(y)\right\} \in U .
$$

This relation is easily irreflexive. If $x<y$ and $y<z$, let A and B be in U to witness those respectively. Then for $f \in A \cap B$ it is true that $f^{-1}(x)<f^{-1}(y)<f^{-1}(z)$. Finally, given any $x, y \in X$, then $A_{x} \cap A_{y} \in U$, and so exactly one of $\left\{f \in S(X) \mid f^{-1}(x)<f^{-1}(y)\right\}$ and $\left\{f \in S(X) \mid f^{-1}(y)<f^{-1}(x)\right\}$ is in U.

Theorem (ZF + BPI)

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let $S(X)$ be the set of finite injective sequences from X. Let U be an ultrafilter on $S(X)$ containing all the sets $A_{x}=\{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$. Define

$$
x<y \Longleftrightarrow\left\{f \in S(X) \mid f^{-1}(x)<f^{-1}(y)\right\} \in U .
$$

This relation is easily irreflexive. If $x<y$ and $y<z$, let A and B be in U to witness those respectively. Then for $f \in A \cap B$ it is true that $f^{-1}(x)<f^{-1}(y)<f^{-1}(z)$. Finally, given any $x, y \in X$, then $A_{x} \cap A_{y} \in U$, and so exactly one of $\left\{f \in S(X) \mid f^{-1}(x)<f^{-1}(y)\right\}$ and $\left\{f \in S(X) \mid f^{-1}(y)<f^{-1}(x)\right\}$ is in U.

Remark

BPI is consistent with the existence of an infinite set without a countably infinite subset!

Theorem (ZF + BPI)

Every set can be linearly ordered.

Proof.

Let X be an infinite set, and let $S(X)$ be the set of finite injective sequences from X. Let U be an ultrafilter on $S(X)$ containing all the sets $A_{x}=\{f \in S(X) \mid x \in \operatorname{rng} f\}$ for $x \in X$. Define

$$
x<y \Longleftrightarrow\left\{f \in S(X) \mid f^{-1}(x)<f^{-1}(y)\right\} \in U
$$

This relation is easily irreflexive. If $x<y$ and $y<z$, let A and B be in U to witness those respectively. Then for $f \in A \cap B$ it is true that $f^{-1}(x)<f^{-1}(y)<f^{-1}(z)$. Finally, given any $x, y \in X$, then $A_{x} \cap A_{y} \in U$, and so exactly one of $\left\{f \in S(X) \mid f^{-1}(x)<f^{-1}(y)\right\}$ and $\left\{f \in S(X) \mid f^{-1}(y)<f^{-1}(x)\right\}$ is in U.

Remark

BPI is consistent with the existence of an infinite set without a countably infinite subset! It is in fact independent of DC and AC_{ω} !

Theorem

The following are equivalent:

- BPI.

Theorem

The following are equivalent:
(1 BPI .
2 The Ultrafilter Lemma.

Theorem

The following are equivalent:
(1) BPI.

2 The Ultrafilter Lemma.
(3) The compactness theorem for first-order logic.

Theorem

The following are equivalent:
(1) BPI.

2 The Ultrafilter Lemma.
(3) The compactness theorem for first-order logic.
(4) The completeness theorem for first-order logic.

Theorem

The following are equivalent:
(1) BPI.

2 The Ultrafilter Lemma.
(3) The compactness theorem for first-order logic.
(4) The completeness theorem for first-order logic.
(5) Banach-Alaoglu Theorem.

Theorem

The following are equivalent:
(1) BPI.

2 The Ultrafilter Lemma.
(3) The compactness theorem for first-order logic.
(4) The completeness theorem for first-order logic.
(5) Banach-Alaoglu Theorem.
(6) The product of compact Hausdorff spaces is a compact Hausdorff space.

Theorem

The following are equivalent:
(1) BPI.

2 The Ultrafilter Lemma.
(3) The compactness theorem for first-order logic.
(4) The completeness theorem for first-order logic.
(5) Banach-Alaoglu Theorem.
(6) The product of compact Hausdorff spaces is a compact Hausdorff space.
(3) 2^{I} is compact for any set I, where 2 is discrete.

Theorem

The following are equivalent:
(BPI.
2 The Ultrafilter Lemma.
(3) The compactness theorem for first-order logic.
(4) The completeness theorem for first-order logic.
(5) Banach-Alaoglu Theorem.
(6) The product of compact Hausdorff spaces is a compact Hausdorff space.
(1) 2^{I} is compact for any set I, where 2 is discrete.
(8) If R is a commutative ring with a unit, then every ideal is contained in a prime ideal.

Part II

Symmetric Systems

Let \mathbb{P} be a notion of forcing.

Let \mathbb{P} be a notion of forcing. If π is an automorphism of \mathbb{P}, then π acts on the P-names by the following recursive definition:

Let \mathbb{P} be a notion of forcing. If π is an automorphism of \mathbb{P}, then π acts on the P-names by the following recursive definition:

$$
\pi \dot{x}=\{\langle\pi p, \pi \dot{y}\rangle \mid\langle p, \dot{y}\rangle \in \dot{x}\} .
$$

Let \mathbb{P} be a notion of forcing. If π is an automorphism of \mathbb{P}, then π acts on the P-names by the following recursive definition:

$$
\pi \dot{x}=\{\langle\pi p, \pi \dot{y}\rangle \mid\langle p, \dot{y}\rangle \in \dot{x}\} .
$$

Proposition

If x is in the ground model, then $\pi \check{x}=\check{x}$.

Let \mathbb{P} be a notion of forcing. If π is an automorphism of \mathbb{P}, then π acts on the P-names by the following recursive definition:

$$
\pi \dot{x}=\{\langle\pi p, \pi \dot{y}\rangle \mid\langle p, \dot{y}\rangle \in \dot{x}\} .
$$

Proposition

If x is in the ground model, then $\pi \check{x}=\check{x}$.

Proof.

By \in-recursion on x.

Let \mathbb{P} be a notion of forcing. If π is an automorphism of \mathbb{P}, then π acts on the P-names by the following recursive definition:

$$
\pi \dot{x}=\{\langle\pi p, \pi \dot{y}\rangle \mid\langle p, \dot{y}\rangle \in \dot{x}\} .
$$

Proposition

If x is in the ground model, then $\pi \check{x}=\check{x}$.

Proof.

By \in-recursion on x. Recall that $\check{x}=\{\langle\mathbb{1}, \check{y}\rangle \mid y \in x\}$.

Let \mathbb{P} be a notion of forcing. If π is an automorphism of \mathbb{P}, then π acts on the P-names by the following recursive definition:

$$
\pi \dot{x}=\{\langle\pi p, \pi \dot{y}\rangle \mid\langle p, \dot{y}\rangle \in \dot{x}\} .
$$

Proposition

If x is in the ground model, then $\pi \check{x}=\check{x}$.

Proof.

By \in-recursion on x. Recall that $\check{x}=\{\langle\mathbb{1}, \check{y}\rangle \mid y \in x\}$. Since $\pi \mathbb{1}=\mathbb{1}$ and by the recursion hypothesis $\pi \check{y}=\check{y}$ for all $y \in x$ the result follows.

Let \mathbb{P} be a notion of forcing. If π is an automorphism of \mathbb{P}, then π acts on the P-names by the following recursive definition:

$$
\pi \dot{x}=\{\langle\pi p, \pi \dot{y}\rangle \mid\langle p, \dot{y}\rangle \in \dot{x}\} .
$$

Proposition

If x is in the ground model, then $\pi \check{x}=\check{x}$.

Proof.

By \in-recursion on x. Recall that $\check{x}=\{\langle\mathbb{1}, \check{y}\rangle \mid y \in x\}$. Since $\pi \mathbb{1}=\mathbb{1}$ and by the recursion hypothesis $\pi \check{y}=\check{y}$ for all $y \in x$ the result follows.

Lemma (The Symmetry Lemma)

$p \Vdash \varphi(\dot{x}) \Longleftrightarrow \pi p \Vdash \varphi(\pi \dot{x})$.

Definition

Let \mathscr{G} be a group. We say that \mathscr{F} is a filter of subgroups on \mathscr{G} if it is a non-empty collection of subgroups of \mathscr{G} which is closed under finite intersections and supergroups.

Definition

Let \mathscr{G} be a group. We say that \mathscr{F} is a filter of subgroups on \mathscr{G} if it is a non-empty collection of subgroups of \mathscr{G} which is closed under finite intersections and supergroups.

We say that \mathscr{F} is a normal filter of subgroup if whenever $\pi \in \mathscr{G}$ and $H \in \mathscr{F}$, then $\pi H \pi^{-1} \in \mathscr{F}$.

Definition

Let \mathscr{G} be a group. We say that \mathscr{F} is a filter of subgroups on \mathscr{G} if it is a non-empty collection of subgroups of \mathscr{G} which is closed under finite intersections and supergroups.

We say that \mathscr{F} is a normal filter of subgroup if whenever $\pi \in \mathscr{G}$ and $H \in \mathscr{F}$, then $\pi H \pi^{-1} \in \mathscr{F}$.

We say that $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ is a symmetric system when \mathbb{P} is a notion of forcing, \mathscr{G} is a group of automorphisms of \mathbb{P}, and \mathscr{F} is a normal filter of subgroups on \mathscr{G}.

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system.

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. A P-name, \dot{x}, is \mathscr{F}-symmetric if $\operatorname{sym}_{\mathscr{G}}(\dot{x}) \in \mathscr{F}$, where

$$
\operatorname{sym}_{\mathscr{G}}(\dot{x})=\{\pi \in \mathscr{G} \mid \pi \dot{x}=\dot{x}\} .
$$

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. A \mathbb{P}-name, \dot{x}, is \mathscr{F}-symmetric if $\operatorname{sym}_{\mathscr{G}}(\dot{x}) \in \mathscr{F}$, where

$$
\operatorname{sym}_{\mathscr{G}}(\dot{x})=\{\pi \in \mathscr{G} \mid \pi \dot{x}=\dot{x}\} .
$$

If this property holds hereditarily for all the names that appear in \dot{x}, we say that \dot{x} is hereditarily \mathscr{F}-symmetric.

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. A P-name, \dot{x}, is \mathscr{F}-symmetric if $\operatorname{sym}_{\mathscr{G}}(\dot{x}) \in \mathscr{F}$, where

$$
\operatorname{sym}_{\mathscr{G}}(\dot{x})=\{\pi \in \mathscr{G} \mid \pi \dot{x}=\dot{x}\} .
$$

If this property holds hereditarily for all the names that appear in \dot{x}, we say that \dot{x} is hereditarily \mathscr{F}-symmetric.

Proposition

$\operatorname{sym}_{\mathscr{G}}(\pi \dot{x})=\pi \operatorname{sym}_{\mathscr{G}}(\dot{x}) \pi^{-1}$.

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. A P-name, \dot{x}, is \mathscr{F}-symmetric if $\operatorname{sym}_{\mathscr{G}}(\dot{x}) \in \mathscr{F}$, where

$$
\operatorname{sym}_{\mathscr{G}}(\dot{x})=\{\pi \in \mathscr{G} \mid \pi \dot{x}=\dot{x}\} .
$$

If this property holds hereditarily for all the names that appear in \dot{x}, we say that \dot{x} is hereditarily \mathscr{F}-symmetric.

Proposition

$\operatorname{sym}_{\mathscr{G}}(\pi \dot{x})=\pi \operatorname{sym}_{\mathscr{G}}(\dot{x}) \pi^{-1}$.Consequently, if \dot{x} is \mathscr{F}-symmetric, then for all $\pi \in \mathscr{G}, \pi \dot{x}$ is \mathscr{F}-symmetric as well.

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. A P-name, \dot{x}, is \mathscr{F}-symmetric if $\operatorname{sym}_{\mathscr{G}}(\dot{x}) \in \mathscr{F}$, where

$$
\operatorname{sym}_{\mathscr{G}}(\dot{x})=\{\pi \in \mathscr{G} \mid \pi \dot{x}=\dot{x}\} .
$$

If this property holds hereditarily for all the names that appear in \dot{x}, we say that \dot{x} is hereditarily \mathscr{F}-symmetric.

Proposition

$\operatorname{sym}_{\mathscr{G}}(\pi \dot{x})=\pi \operatorname{sym}_{\mathscr{G}}(\dot{x}) \pi^{-1}$.Consequently, if \dot{x} is \mathscr{F}-symmetric, then for all $\pi \in \mathscr{G}, \pi \dot{x}$ is \mathscr{F}-symmetric as well.

We denote by $\mathrm{HS}_{\mathscr{F}}$ the class of all hereditarily \mathscr{F}-symmetric names.

Theorem

Let G be a V-generic filter, then $M=\left\{\dot{x}^{G} \mid \dot{x} \in \mathrm{HS}_{\mathscr{F}}\right\}=\mathrm{HS}_{\mathscr{F}}^{G}$ is a transitive class in $V[G]$ which contains V, and $M \models$ ZF.

Theorem

Let G be a V-generic filter, then $M=\left\{\dot{x}^{G} \mid \dot{x} \in \mathrm{HS}_{\mathscr{F}}\right\}=\mathrm{HS}_{\mathscr{F}}^{G}$ is a transitive class in $V[G]$ which contains V, and $M \models$ ZF.

We call such M a symmetric extension of V.

Theorem

Let G be a V-generic filter, then $M=\left\{\dot{x}^{G} \mid \dot{x} \in \mathrm{HS}_{\mathscr{F}}\right\}=\mathrm{HS}_{\mathscr{F}}^{G}$ is a transitive class in $V[G]$ which contains V, and $M \models$ ZF.

We call such M a symmetric extension of V. We also have a forcing relation, \Vdash^{HS} which is the relativisation of \Vdash to $\mathrm{HS} \mathscr{F}$,

Theorem

Let G be a V-generic filter, then $M=\left\{\dot{x}^{G} \mid \dot{x} \in \mathrm{HS}_{\mathscr{F}}\right\}=\mathrm{HS}_{\mathscr{F}}^{G}$ is a transitive class in $V[G]$ which contains V, and $M \models \mathrm{ZF}$.

We call such M a symmetric extension of V. We also have a forcing relation, $\Vdash{ }^{\mathrm{HS}}$ which is the relativisation of \Vdash to $\mathrm{HS} \mathscr{F}$, this relation behaves exactly as expected.

Theorem

Let G be a V-generic filter, then $M=\left\{\dot{x}^{G} \mid \dot{x} \in \mathrm{HS}_{\mathscr{F}}\right\}=\mathrm{HS}_{\mathscr{F}}^{G}$ is a transitive class in $V[G]$ which contains V, and $M \models \mathrm{ZF}$.

We call such M a symmetric extension of V. We also have a forcing relation, $\Vdash{ }^{\mathrm{HS}}$ which is the relativisation of \Vdash to $\mathrm{HS} \mathscr{F}$, this relation behaves exactly as expected.

It even satisfies a version of the Symmetry Lemma when we restrict the automorphisms to the group \mathscr{G}.

Theorem

Let G be a V-generic filter, then $M=\left\{\dot{x}^{G} \mid \dot{x} \in \mathrm{HS}_{\mathscr{F}}\right\}=\mathrm{HS}_{\mathscr{F}}^{G}$ is a transitive class in $V[G]$ which contains V, and $M \models \mathrm{ZF}$.

We call such M a symmetric extension of V. We also have a forcing relation, $\Vdash{ }^{\mathrm{HS}}$ which is the relativisation of \Vdash to $\mathrm{HS} \mathscr{F}$, this relation behaves exactly as expected.

It even satisfies a version of the Symmetry Lemma when we restrict the automorphisms to the group \mathscr{G}.

We will omit the subscripts from here on end, since the symmetric system will be clear from context.

Definition

We say that M satisfies Small Violations of Choice (SVC) if there is some X such that for any set Y there is some ordinal α and a surjection from $X \times \alpha$ onto Y.

Definition

We say that M satisfies Small Violations of Choice (SVC) if there is some X such that for any set Y there is some ordinal α and a surjection from $X \times \alpha$ onto Y. We call such X a seed.

Definition

We say that M satisfies Small Violations of Choice (SVC) if there is some X such that for any set Y there is some ordinal α and a surjection from $X \times \alpha$ onto Y. We call such X a seed.

Theorem

M is a model of SVC if and only if M is a symmetric extension of some model of ZFC.

Definition

We say that M satisfies Small Violations of Choice (SVC) if there is some X such that for any set Y there is some ordinal α and a surjection from $X \times \alpha$ onto Y. We call such X a seed.

Theorem

M is a model of SVC if and only if M is a symmetric extension of some model of ZFC.

Theorem

$M \models$ SVC if and only if $M=V(x)$ for some $V \models$ ZFC and $x \in M$.

Definition

We say that M satisfies Small Violations of Choice (SVC) if there is some X such that for any set Y there is some ordinal α and a surjection from $X \times \alpha$ onto Y. We call such X a seed.

Theorem

M is a model of SVC if and only if M is a symmetric extension of some model of ZFC.

Theorem

$M \models$ SVC if and only if $M=V(x)$ for some $V \models$ ZFC and $x \in M$.

Let's see an example...

Let \mathbb{P} be the forcing $\operatorname{Add}\left(\omega, \omega_{1}\right)$.

Let \mathbb{P} be the forcing $\operatorname{Add}\left(\omega, \omega_{1}\right)$. The conditions, therefore, are finite functions $p: \omega_{1} \times \omega \rightarrow 2$, ordered by reverse inclusion.

Let \mathbb{P} be the forcing $\operatorname{Add}\left(\omega, \omega_{1}\right)$. The conditions, therefore, are finite functions p : $\omega_{1} \times \omega \rightarrow 2$, ordered by reverse inclusion. We will denote by \dot{a}_{α} the α th real:

$$
\dot{a}_{\alpha}=\{\langle p, \check{n}\rangle \mid p(\alpha, n)=1\} .
$$

Let \mathbb{P} be the forcing $\operatorname{Add}\left(\omega, \omega_{1}\right)$. The conditions, therefore, are finite functions $p: \omega_{1} \times \omega \rightarrow 2$, ordered by reverse inclusion. We will denote by \dot{a}_{α} the α th real:

$$
\dot{a}_{\alpha}=\{\langle p, \check{n}\rangle \mid p(\alpha, n)=1\} .
$$

We will also denote by $\dot{A}=\left\{\dot{a}_{\alpha} \mid \alpha<\omega_{1}\right\} \bullet=\left\{\left\langle\mathbb{1}, \dot{a}_{\alpha}\right\rangle \mid \alpha<\omega_{1}\right\}$.

Digression!

If $\left\{\dot{x}_{i} \mid i \in I\right\}$ is a collection of names, we use $\left\{\dot{x}_{i} \mid i \in I\right\}$ 都 denote the obvious name they define:

$$
\left\{\left\langle\mathbb{1}, \dot{x}_{i}\right\rangle \mid i \in I\right\} .
$$

Digression!

If $\left\{\dot{x}_{i} \mid i \in I\right\}$ is a collection of names, we use $\left\{\dot{x}_{i} \mid i \in I\right\}$ 都 denote the obvious name they define:

$$
\left\{\left\langle\mathbb{1}, \dot{x}_{i}\right\rangle \mid i \in I\right\} .
$$

This notation extends naturally to ordered pairs and functions, etc.

Digression!

If $\left\{\dot{x}_{i} \mid i \in I\right\}$ is a collection of names, we use $\left\{\dot{x}_{i} \mid i \in I\right\}$ 都 denote the obvious name they define:

$$
\left\{\left\langle\mathbb{1}, \dot{x}_{i}\right\rangle \mid i \in I\right\} .
$$

This notation extends naturally to ordered pairs and functions, etc. For example, it simplifies $\check{x}=\{\check{y} \mid y \in x\}^{\bullet}$.

Let \mathbb{P} be the forcing $\operatorname{Add}\left(\omega, \omega_{1}\right)$. The conditions, therefore, are finite functions $p: \omega_{1} \times \omega \rightarrow 2$, ordered by reverse inclusion. We will denote by \dot{a}_{α} the α th real:

$$
\dot{a}_{\alpha}=\{\langle p, \check{n}\rangle \mid p(\alpha, n)=1\} .
$$

We will also denote by $\dot{A}=\left\{\dot{a}_{\alpha} \mid \alpha<\omega_{1}\right\}^{\bullet}=\left\{\left\langle\mathbb{1}, \dot{a}_{\alpha}\right\rangle \mid \alpha<\omega_{1}\right\}$.

Let \mathbb{P} be the forcing $\operatorname{Add}\left(\omega, \omega_{1}\right)$. The conditions, therefore, are finite functions $p: \omega_{1} \times \omega \rightarrow 2$, ordered by reverse inclusion. We will denote by \dot{a}_{α} the α th real:

$$
\dot{a}_{\alpha}=\{\langle p, \check{n}\rangle \mid p(\alpha, n)=1\} .
$$

We will also denote by $\dot{A}=\left\{\dot{a}_{\alpha} \mid \alpha<\omega_{1}\right\}^{\bullet}=\left\{\left\langle\mathbb{1}, \dot{a}_{\alpha}\right\rangle \mid \alpha<\omega_{1}\right\}$.
Our group of permutations are going to be the permutations of ω_{1} which act on \mathbb{P} in the following way:

$$
\pi p(\pi \alpha, n)=p(\alpha, n)
$$

Let \mathbb{P} be the forcing $\operatorname{Add}\left(\omega, \omega_{1}\right)$. The conditions, therefore, are finite functions $p: \omega_{1} \times \omega \rightarrow 2$, ordered by reverse inclusion. We will denote by \dot{a}_{α} the α th real:

$$
\dot{a}_{\alpha}=\{\langle p, \check{n}\rangle \mid p(\alpha, n)=1\} .
$$

We will also denote by $\dot{A}=\left\{\dot{a}_{\alpha} \mid \alpha<\omega_{1}\right\} \bullet=\left\{\left\langle\mathbb{1}, \dot{a}_{\alpha}\right\rangle \mid \alpha<\omega_{1}\right\}$.
Our group of permutations are going to be the permutations of ω_{1} which act on \mathbb{P} in the following way:

$$
\pi p(\pi \alpha, n)=p(\alpha, n)
$$

Proposition

$\pi \dot{a}_{\alpha}=\dot{a}_{\pi \alpha}$.

Let \mathbb{P} be the forcing $\operatorname{Add}\left(\omega, \omega_{1}\right)$. The conditions, therefore, are finite functions $p: \omega_{1} \times \omega \rightarrow 2$, ordered by reverse inclusion. We will denote by \dot{a}_{α} the α th real:

$$
\dot{a}_{\alpha}=\{\langle p, \check{n}\rangle \mid p(\alpha, n)=1\} .
$$

We will also denote by $\dot{A}=\left\{\dot{a}_{\alpha} \mid \alpha<\omega_{1}\right\}^{\bullet}=\left\{\left\langle 1, \dot{a}_{\alpha}\right\rangle \mid \alpha<\omega_{1}\right\}$.
Our group of permutations are going to be the permutations of ω_{1} which act on \mathbb{P} in the following way:

$$
\pi p(\pi \alpha, n)=p(\alpha, n)
$$

Proposition

$\pi \dot{a}_{\alpha}=\dot{a}_{\pi \alpha}$. Consequently, $\pi \dot{A}=\dot{A}$ for all $\pi \in \mathscr{G}$.

Let \mathbb{P} be the forcing $\operatorname{Add}\left(\omega, \omega_{1}\right)$. The conditions, therefore, are finite functions $p: \omega_{1} \times \omega \rightarrow 2$, ordered by reverse inclusion. We will denote by \dot{a}_{α} the α th real:

$$
\dot{a}_{\alpha}=\{\langle p, \check{n}\rangle \mid p(\alpha, n)=1\} .
$$

We will also denote by $\dot{A}=\left\{\dot{a}_{\alpha} \mid \alpha<\omega_{1}\right\}^{\bullet}=\left\{\left\langle 1, \dot{a}_{\alpha}\right\rangle \mid \alpha<\omega_{1}\right\}$.
Our group of permutations are going to be the permutations of ω_{1} which act on \mathbb{P} in the following way:

$$
\pi p(\pi \alpha, n)=p(\alpha, n)
$$

Proposition

$\pi \dot{a}_{\alpha}=\dot{a}_{\pi \alpha}$. Consequently, $\pi \dot{A}=\dot{A}$ for all $\pi \in \mathscr{G}$.

Proof.

$\pi p(\pi \alpha, n)=p(\alpha, n)$ by definition of the action of π.

Let \mathbb{P} be the forcing $\operatorname{Add}\left(\omega, \omega_{1}\right)$. The conditions, therefore, are finite functions $p: \omega_{1} \times \omega \rightarrow 2$, ordered by reverse inclusion. We will denote by \dot{a}_{α} the α th real:

$$
\dot{a}_{\alpha}=\{\langle p, \check{n}\rangle \mid p(\alpha, n)=1\} .
$$

We will also denote by $\dot{A}=\left\{\dot{a}_{\alpha} \mid \alpha<\omega_{1}\right\}^{\bullet}=\left\{\left\langle 1, \dot{a}_{\alpha}\right\rangle \mid \alpha<\omega_{1}\right\}$.
Our group of permutations are going to be the permutations of ω_{1} which act on \mathbb{P} in the following way:

$$
\pi p(\pi \alpha, n)=p(\alpha, n)
$$

Proposition

$\pi \dot{a}_{\alpha}=\dot{a}_{\pi \alpha}$. Consequently, $\pi \dot{A}=\dot{A}$ for all $\pi \in \mathscr{G}$.

Proof.

$\pi p(\pi \alpha, n)=p(\alpha, n)$ by definition of the action of π. Therefore, $\pi p(\pi \alpha, n)=1$ if and only if $p(\alpha, n)=1$, and the equality follows.

The filter \mathscr{F} is defined to be generated by groups of the form $\operatorname{fix}(E)=\{\pi \in \mathscr{G} \mid \pi \upharpoonright E=\mathrm{id}\}$, where $E \subseteq \omega_{1}$ is a countable set.

The filter \mathscr{F} is defined to be generated by groups of the form $\operatorname{fix}(E)=\{\pi \in \mathscr{G} \mid \pi \upharpoonright E=\mathrm{id}\}$, where $E \subseteq \omega_{1}$ is a countable set. The previous proposition tells us that $\dot{a}_{\alpha} \in \mathrm{HS}$ for all α,

The filter \mathscr{F} is defined to be generated by groups of the form fix $(E)=\{\pi \in \mathscr{G} \mid \pi \upharpoonright E=\mathrm{id}\}$, where $E \subseteq \omega_{1}$ is a countable set.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathrm{HS}$ for all α, since fix $(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathrm{HS}$.

The filter \mathscr{F} is defined to be generated by groups of the form $\operatorname{fix}(E)=\{\pi \in \mathscr{G} \mid \pi \upharpoonright E=\mathrm{id}\}$, where $E \subseteq \omega_{1}$ is a countable set.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathrm{HS}$ for all α, since fix $(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathrm{HS}$.

Proposition

$11 \vdash^{\mathrm{HS}} \dot{A}$ cannot be well-ordered.

The filter \mathscr{F} is defined to be generated by groups of the form $\operatorname{fix}(E)=\{\pi \in \mathscr{G} \mid \pi \upharpoonright E=\mathrm{id}\}$, where $E \subseteq \omega_{1}$ is a countable set.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathrm{HS}$ for all α, since fix $(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathrm{HS}$.

Proposition

$\mathbb{1} \Vdash^{\mathrm{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \mathrm{HS}$ is a name such that some $p \Vdash^{\mathrm{HS}} \dot{f}: \dot{A} \rightarrow \check{\kappa}$.

The filter \mathscr{F} is defined to be generated by groups of the form $\operatorname{fix}(E)=\{\pi \in \mathscr{G} \mid \pi \upharpoonright E=\mathrm{id}\}$, where $E \subseteq \omega_{1}$ is a countable set.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathrm{HS}$ for all α, since fix $(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathrm{HS}$.

Proposition

$11 \vdash^{\mathrm{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \mathrm{HS}$ is a name such that some $p \Vdash^{\mathrm{HS}} \dot{f}: \dot{A} \rightarrow \check{k}$. Let E be such that fix $(E) \subseteq \operatorname{sym}(\dot{f})$.

The filter \mathscr{F} is defined to be generated by groups of the form $\operatorname{fix}(E)=\{\pi \in \mathscr{G} \mid \pi \upharpoonright E=\mathrm{id}\}$, where $E \subseteq \omega_{1}$ is a countable set.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathrm{HS}$ for all α, since fix $(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathrm{HS}$.

Proposition

$\mathbb{1} \Vdash^{\mathrm{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \mathrm{HS}$ is a name such that some $p \Vdash^{\mathrm{HS}} \dot{f}: \dot{A} \rightarrow \check{k}$. Let E be such that fix $(E) \subseteq \operatorname{sym}(\dot{f})$. Let $q \leqslant p$ be some condition that for some $\alpha \notin E, q \Vdash^{\mathrm{HS}} \dot{f}\left(\dot{a}_{\alpha}\right)=\check{\xi}$.

The filter \mathscr{F} is defined to be generated by groups of the form $\operatorname{fix}(E)=\{\pi \in \mathscr{G} \mid \pi \upharpoonright E=\mathrm{id}\}$, where $E \subseteq \omega_{1}$ is a countable set.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathrm{HS}$ for all α, since fix $(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathrm{HS}$.

Proposition

$\mathbb{1} \Vdash^{\mathrm{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \mathrm{HS}$ is a name such that some $p \Vdash^{\mathrm{HS}} \dot{f}: \dot{A} \rightarrow \check{k}$. Let E be such that fix $(E) \subseteq \operatorname{sym}(\dot{f})$. Let $q \leqslant p$ be some condition that for some $\alpha \notin E, q \Vdash^{\text {HS }} \dot{f}\left(\dot{a}_{\alpha}\right)=\check{\xi}$. Let β be an ordinal which is not mentioned in E or q, and consider the cycle $\pi=(\alpha \beta)$.

The filter \mathscr{F} is defined to be generated by groups of the form $\operatorname{fix}(E)=\{\pi \in \mathscr{G} \mid \pi \upharpoonright E=\mathrm{id}\}$, where $E \subseteq \omega_{1}$ is a countable set.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathrm{HS}$ for all α, since fix $(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathrm{HS}$.

Proposition

$\mathbb{1} \Vdash^{\mathrm{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \mathrm{HS}$ is a name such that some $p \Vdash^{\mathrm{HS}} \dot{f}: \dot{A} \rightarrow \check{k}$. Let E be such that fix $(E) \subseteq \operatorname{sym}(\dot{f})$. Let $q \leqslant p$ be some condition that for some $\alpha \notin E, q \Vdash^{\mathrm{HS}} \dot{f}\left(\dot{a}_{\alpha}\right)=\check{\xi}$. Let β be an ordinal which is not mentioned in E or q, and consider the cycle $\pi=(\alpha \beta)$. Then πq is compatible with q,

The filter \mathscr{F} is defined to be generated by groups of the form $\operatorname{fix}(E)=\{\pi \in \mathscr{G} \mid \pi \upharpoonright E=\mathrm{id}\}$, where $E \subseteq \omega_{1}$ is a countable set.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathrm{HS}$ for all α, since fix $(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathrm{HS}$.

Proposition

$\mathbb{1} \Vdash^{\mathrm{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \mathrm{HS}$ is a name such that some $p \Vdash^{\mathrm{HS}} \dot{f}: \dot{A} \rightarrow \check{k}$. Let E be such that fix $(E) \subseteq \operatorname{sym}(\dot{f})$. Let $q \leqslant p$ be some condition that for some $\alpha \notin E, q \Vdash^{\mathrm{HS}} \dot{f}\left(\dot{a}_{\alpha}\right)=\check{\xi}$. Let β be an ordinal which is not mentioned in E or q, and consider the cycle $\pi=(\alpha \beta)$. Then πq is compatible with q, and $\pi q \Vdash^{\mathrm{HS}} \pi \dot{f}\left(\pi \dot{a}_{\alpha}\right)=\pi \check{\xi}$.

The filter \mathscr{F} is defined to be generated by groups of the form $\operatorname{fix}(E)=\{\pi \in \mathscr{G} \mid \pi \upharpoonright E=\mathrm{id}\}$, where $E \subseteq \omega_{1}$ is a countable set.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathrm{HS}$ for all α, since fix $(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathrm{HS}$.

Proposition

$\mathbb{1} \Vdash^{\mathrm{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \mathrm{HS}$ is a name such that some $p \Vdash^{\mathrm{HS}} \dot{f}: \dot{A} \rightarrow \check{k}$. Let E be such that fix $(E) \subseteq \operatorname{sym}(\dot{f})$. Let $q \leqslant p$ be some condition that for some $\alpha \notin E, q \Vdash^{\mathrm{HS}} \dot{f}\left(\dot{a}_{\alpha}\right)=\check{\xi}$. Let β be an ordinal which is not mentioned in E or q, and consider the cycle $\pi=(\alpha \beta)$. Then πq is compatible with q, and $\pi q \Vdash^{\mathrm{HS}} \pi \dot{f}\left(\pi \dot{a}_{\alpha}\right)=\pi \check{\xi}$. Simplifying this, we get $\pi q \Vdash^{\mathrm{HS}} \dot{f}\left(\dot{a}_{\beta}\right)=\check{\xi}$.

The filter \mathscr{F} is defined to be generated by groups of the form $\operatorname{fix}(E)=\{\pi \in \mathscr{G} \mid \pi \upharpoonright E=\mathrm{id}\}$, where $E \subseteq \omega_{1}$ is a countable set.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathrm{HS}$ for all α, since fix $(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathrm{HS}$.

Proposition

$\mathbb{1} \Vdash^{\mathrm{HS}} \dot{A}$ cannot be well-ordered.

Proof.

Suppose that $\dot{f} \in \mathrm{HS}$ is a name such that some $p \Vdash^{\mathrm{HS}} \dot{f}: \dot{A} \rightarrow \check{k}$. Let E be such that fix $(E) \subseteq \operatorname{sym}(\dot{f})$. Let $q \leqslant p$ be some condition that for some $\alpha \notin E, q \Vdash^{\mathrm{HS}} \dot{f}\left(\dot{a}_{\alpha}\right)=\check{\xi}$. Let β be an ordinal which is not mentioned in E or q, and consider the cycle $\pi=(\alpha \beta)$. Then πq is compatible with q, and $\pi q \Vdash^{\mathrm{HS}} \pi \dot{f}\left(\pi \dot{a}_{\alpha}\right)=\pi \check{\xi}$. Simplifying this, we get $\pi q \Vdash^{\mathrm{HS}} \dot{f}\left(\dot{a}_{\beta}\right)=\check{\xi}$.
Since q and πq are compatible, q could not have forced that \dot{f} is injective, and the same holds for p.

The filter \mathscr{F} is defined to be generated by groups of the form $\operatorname{fix}(E)=\{\pi \in \mathscr{G} \mid \pi \upharpoonright E=\mathrm{id}\}$, where $E \subseteq \omega_{1}$ is a countable set.

The previous proposition tells us that $\dot{a}_{\alpha} \in \mathrm{HS}$ for all α, since fix $(\{\alpha\}) \in \mathscr{F}$, and therefore also $\dot{A} \in \mathrm{HS}$.

Proposition

```
11\Vdash}\mp@subsup{}{}{\textrm{HS}}\dot{A}\mathrm{ cannot be well-ordered.
```


Proof.

Suppose that $\dot{f} \in \mathrm{HS}$ is a name such that some $p \Vdash^{\mathrm{HS}} \dot{f}: \dot{A} \rightarrow \check{k}$. Let E be such that fix $(E) \subseteq \operatorname{sym}(\dot{f})$. Let $q \leqslant p$ be some condition that for some $\alpha \notin E, q \Vdash^{\mathrm{HS}} \dot{f}\left(\dot{a}_{\alpha}\right)=\check{\xi}$. Let β be an ordinal which is not mentioned in E or q, and consider the cycle $\pi=(\alpha \beta)$. Then πq is compatible with q, and $\pi q \Vdash^{\mathrm{HS}} \pi \dot{f}\left(\pi \dot{a}_{\alpha}\right)=\pi \check{\xi}$. Simplifying this, we get $\pi q \Vdash^{\mathrm{HS}} \dot{f}\left(\dot{a}_{\beta}\right)=\check{\xi}$.
Since q and πq are compatible, q could not have forced that \dot{f} is injective, and the same holds for p. But p and \dot{f} were arbitrary so $\mathbb{1}$ must force that nno such injective \dot{f} can exist.

This is a fairly simplistic symmetric system.

This is a fairly simplistic symmetric system. But we can do more complicated things.

This is a fairly simplistic symmetric system. But we can do more complicated things.

We can put a structure on ω_{1} and only look at automorphisms of that structure.

This is a fairly simplistic symmetric system. But we can do more complicated things.

We can put a structure on ω_{1} and only look at automorphisms of that structure.

We can allow the filter be generated by a different class of sets. Etc.

This is a fairly simplistic symmetric system. But we can do more complicated things.

We can put a structure on ω_{1} and only look at automorphisms of that structure.

We can allow the filter be generated by a different class of sets. Etc.
The general idea is that the group preserves structure and the filter of groups preserve subsets.

This is a fairly simplistic symmetric system. But we can do more complicated things.

We can put a structure on ω_{1} and only look at automorphisms of that structure.

We can allow the filter be generated by a different class of sets. Etc.
The general idea is that the group preserves structure and the filter of groups preserve subsets.

While not entirely accurate, this is a good approximation for the truth.

This is a fairly simplistic symmetric system. But we can do more complicated things.

We can put a structure on ω_{1} and only look at automorphisms of that structure.

We can allow the filter be generated by a different class of sets. Etc.

The general idea is that the group preserves structure and the filter of groups preserve subsets.

While not entirely accurate, this is a good approximation for the truth. And if you take one thing from this, take that.

If we wanted to violate AC_{ω}, we would like to have added a countable sequence of sets without a choice function.

If we wanted to violate AC_{ω}, we would like to have added a countable sequence of sets without a choice function.

For example, we can force with $\operatorname{Add}(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \rightarrow 2$, ordered by inverse inclusion.

If we wanted to violate AC_{ω}, we would like to have added a countable sequence of sets without a choice function.

For example, we can force with $\operatorname{Add}(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \rightarrow 2$, ordered by inverse inclusion. We define $\dot{a}_{i, j}=\{\langle p, \check{n}\rangle \mid p(i, j, n)=1\}$,

If we wanted to violate AC_{ω}, we would like to have added a countable sequence of sets without a choice function.

For example, we can force with $\operatorname{Add}(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \rightarrow 2$, ordered by inverse inclusion. We define $\dot{a}_{i, j}=\{\langle p, \check{n}\rangle \mid p(i, j, n)=1\}$, and we also define $\dot{A}_{i}=\left\{\dot{a}_{i, j} \mid j<\omega\right\} \bullet$ and $\dot{A}=\left\langle\dot{A}_{i} \mid i<\omega\right\rangle^{\bullet}$.

If we wanted to violate AC_{ω}, we would like to have added a countable sequence of sets without a choice function.

For example, we can force with $\operatorname{Add}(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \rightarrow 2$, ordered by inverse inclusion. We define $\dot{a}_{i, j}=\{\langle p, \check{n}\rangle \mid p(i, j, n)=1\}$, and we also define $\dot{A}_{i}=\left\{\dot{a}_{i, j} \mid j<\omega\right\} \bullet$ and $\dot{A}=\left\langle\dot{A}_{i} \mid i<\omega\right\rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G}, will be those permutations of $\omega \times \omega$ which preserve the left coordinate.

If we wanted to violate AC_{ω}, we would like to have added a countable sequence of sets without a choice function.

For example, we can force with $\operatorname{Add}(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \rightarrow 2$, ordered by inverse inclusion. We define $\dot{a}_{i, j}=\{\langle p, \check{n}\rangle \mid p(i, j, n)=1\}$, and we also define $\dot{A}_{i}=\left\{\dot{a}_{i, j} \mid j<\omega\right\} \bullet$ and $\dot{A}=\left\langle\dot{A}_{i} \mid i<\omega\right\rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G}, will be those permutations of $\omega \times \omega$ which preserve the left coordinate. Namely, $\pi(i, j)=\left\langle i, j^{\prime}\right\rangle$ for some j^{\prime}.

If we wanted to violate AC_{ω}, we would like to have added a countable sequence of sets without a choice function.

For example, we can force with $\operatorname{Add}(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \rightarrow 2$, ordered by inverse inclusion. We define $\dot{a}_{i, j}=\{\langle p, \check{n}\rangle \mid p(i, j, n)=1\}$, and we also define $\dot{A}_{i}=\left\{\dot{a}_{i, j} \mid j<\omega\right\} \bullet$ and $\dot{A}=\left\langle\dot{A}_{i} \mid i<\omega\right\rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G}, will be those permutations of $\omega \times \omega$ which preserve the left coordinate. Namely, $\pi(i, j)=\left\langle i, j^{\prime}\right\rangle$ for some j^{\prime}. The action is the same as before, $\pi p(\pi(i, j), n)=p(i, j, n)$.

If we wanted to violate AC_{ω}, we would like to have added a countable sequence of sets without a choice function.

For example, we can force with $\operatorname{Add}(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \rightarrow 2$, ordered by inverse inclusion. We define $\dot{a}_{i, j}=\{\langle p, \check{n}\rangle \mid p(i, j, n)=1\}$, and we also define $\dot{A}_{i}=\left\{\dot{a}_{i, j} \mid j<\omega\right\} \bullet$ and $\dot{A}=\left\langle\dot{A}_{i} \mid i<\omega\right\rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G}, will be those permutations of $\omega \times \omega$ which preserve the left coordinate. Namely, $\pi(i, j)=\left\langle i, j^{\prime}\right\rangle$ for some j^{\prime}. The action is the same as before, $\pi p(\pi(i, j), n)=p(i, j, n)$. So what we are doing is permuting each A_{i} "independently", while preserving the sequence of the A_{i}.

If we wanted to violate AC_{ω}, we would like to have added a countable sequence of sets without a choice function.

For example, we can force with $\operatorname{Add}(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \rightarrow 2$, ordered by inverse inclusion. We define $\dot{a}_{i, j}=\{\langle p, \check{n}\rangle \mid p(i, j, n)=1\}$, and we also define $\dot{A}_{i}=\left\{\dot{a}_{i, j} \mid j<\omega\right\} \bullet$ and $\dot{A}=\left\langle\dot{A}_{i} \mid i<\omega\right\rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G}, will be those permutations of $\omega \times \omega$ which preserve the left coordinate. Namely, $\pi(i, j)=\left\langle i, j^{\prime}\right\rangle$ for some j^{\prime}. The action is the same as before, $\pi p(\pi(i, j), n)=p(i, j, n)$. So what we are doing is permuting each A_{i} "independently", while preserving the sequence of the A_{i}.

Finally, the filter of groups can be, for example, the one generated by fix $(E)=\{\pi \in \mathscr{G} \mid \pi \upharpoonright E \times \omega=\mathrm{id}\}$ for $E \in[\omega]^{<\omega}$.

If we wanted to violate AC_{ω}, we would like to have added a countable sequence of sets without a choice function.

For example, we can force with $\operatorname{Add}(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \rightarrow 2$, ordered by inverse inclusion. We define $\dot{a}_{i, j}=\{\langle p, \check{n}\rangle \mid p(i, j, n)=1\}$, and we also define $\dot{A}_{i}=\left\{\dot{a}_{i, j} \mid j<\omega\right\} \bullet$ and $\dot{A}=\left\langle\dot{A}_{i} \mid i<\omega\right\rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G}, will be those permutations of $\omega \times \omega$ which preserve the left coordinate. Namely, $\pi(i, j)=\left\langle i, j^{\prime}\right\rangle$ for some j^{\prime}. The action is the same as before, $\pi p(\pi(i, j), n)=p(i, j, n)$. So what we are doing is permuting each A_{i} "independently", while preserving the sequence of the A_{i}.

Finally, the filter of groups can be, for example, the one generated by fix $(E)=\{\pi \in \mathscr{G}|\pi| E \times \omega=\mathrm{id}\}$ for $E \in[\omega]^{<\omega}$. Now it is not hard to show that $\dot{a}_{i, j}, \dot{A}_{i}, \dot{A} \in \mathrm{HS}$,

If we wanted to violate AC_{ω}, we would like to have added a countable sequence of sets without a choice function.

For example, we can force with $\operatorname{Add}(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \rightarrow 2$, ordered by inverse inclusion. We define $\dot{a}_{i, j}=\{\langle p, \check{n}\rangle \mid p(i, j, n)=1\}$, and we also define $\dot{A}_{i}=\left\{\dot{a}_{i, j} \mid j<\omega\right\} \bullet$ and $\dot{A}=\left\langle\dot{A}_{i} \mid i<\omega\right\rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G}, will be those permutations of $\omega \times \omega$ which preserve the left coordinate. Namely, $\pi(i, j)=\left\langle i, j^{\prime}\right\rangle$ for some j^{\prime}. The action is the same as before, $\pi p(\pi(i, j), n)=p(i, j, n)$. So what we are doing is permuting each A_{i} "independently", while preserving the sequence of the A_{i}.

Finally, the filter of groups can be, for example, the one generated by $\operatorname{fix}(E)=\{\pi \in \mathscr{G}|\pi| E \times \omega=\mathrm{id}\}$ for $E \in[\omega]^{<\omega}$. Now it is not hard to show that $\dot{a}_{i, j}, \dot{A}_{i}, \dot{A} \in \mathrm{HS}$, and that indeed
$\mathbb{1} \Vdash^{\mathrm{HS}}$ " \dot{A} does not admit a choice function".

If we wanted to violate AC_{ω}, we would like to have added a countable sequence of sets without a choice function.

For example, we can force with $\operatorname{Add}(\omega, \omega \times \omega)$, where the conditions are finite partial functions $p: \omega \times \omega \times \omega \rightarrow 2$, ordered by inverse inclusion. We define $\dot{a}_{i, j}=\{\langle p, \check{n}\rangle \mid p(i, j, n)=1\}$, and we also define $\dot{A}_{i}=\left\{\dot{a}_{i, j} \mid j<\omega\right\} \bullet$ and $\dot{A}=\left\langle\dot{A}_{i} \mid i<\omega\right\rangle^{\bullet}$.

This time the group of automorphisms, \mathscr{G}, will be those permutations of $\omega \times \omega$ which preserve the left coordinate. Namely, $\pi(i, j)=\left\langle i, j^{\prime}\right\rangle$ for some j^{\prime}. The action is the same as before, $\pi p(\pi(i, j), n)=p(i, j, n)$. So what we are doing is permuting each A_{i} "independently", while preserving the sequence of the A_{i}.

Finally, the filter of groups can be, for example, the one generated by $\operatorname{fix}(E)=\{\pi \in \mathscr{G}|\pi| E \times \omega=\mathrm{id}\}$ for $E \in[\omega]^{<\omega}$. Now it is not hard to show that $\dot{a}_{i, j}, \dot{A}_{i}, \dot{A} \in \mathrm{HS}$, and actually

$$
\mathbb{1} \Vdash^{\text {HS }} \dot{f}: \check{\omega} \rightarrow \bigcup_{i<\omega} \dot{A}_{i} \Longrightarrow \exists n<\omega, \operatorname{rng} \dot{f} \subseteq \bigcup_{i<n} \dot{A}_{i} .
$$

Part III

Preservation Theorems

Theorem

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. Suppose that \mathbb{P} is σ-closed and \mathscr{F} is σ-complete, then $\mathbb{1} \Vdash^{\mathrm{HS}} \mathrm{DC}$.

Theorem

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. Suppose that \mathbb{P} is σ-closed and \mathscr{F} is σ-complete, then $\mathbb{1} \Vdash^{\mathrm{HS}} \mathrm{DC}$.

Remark

We can replace σ-closed by c.c.c., and in fact by just requiring properness.

Theorem

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. Suppose that \mathbb{P} is σ-closed and \mathscr{F} is σ-complete, then $\mathbb{1} \Vdash^{\mathrm{HS}} \mathrm{DC}$.

Remark

We can replace σ-closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in \mathrm{HS}$ such that $p \Vdash^{\mathrm{HS}}$ " \dot{T} is a tree without maximal nodes".

Theorem

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. Suppose that \mathbb{P} is σ-closed and \mathscr{F} is σ-complete, then $\mathbb{1} \Vdash^{\mathrm{HS}} \mathrm{DC}$.

Remark

We can replace σ-closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in \mathrm{HS}$ such that $p \Vdash^{\mathrm{HS}}$ " \dot{T} is a tree without maximal nodes". We define a sequence of conditions, p_{n}, and a sequence of names, \dot{t}_{n}, such that

Theorem

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. Suppose that \mathbb{P} is σ-closed and \mathscr{F} is σ-complete, then $\mathbb{1} \Vdash^{\mathrm{HS}} \mathrm{DC}$.

Remark

We can replace σ-closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in \mathrm{HS}$ such that $p \Vdash^{\mathrm{HS}}$ " \dot{T} is a tree without maximal nodes". We define a sequence of conditions, p_{n}, and a sequence of names, \dot{t}_{n}, such that $p_{n+1} \leqslant p_{n}$,

Theorem

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. Suppose that \mathbb{P} is σ-closed and \mathscr{F} is σ-complete, then $\mathbb{1} \Vdash^{\mathrm{HS}} \mathrm{DC}$.

Remark

We can replace σ-closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in \mathrm{HS}$ such that $p \Vdash^{\mathrm{HS}}$ " \dot{T} is a tree without maximal nodes". We define a sequence of conditions, p_{n}, and a sequence of names, \dot{t}_{n}, such that $p_{n+1} \leqslant p_{n}, p_{n+1} \Vdash^{\mathrm{HS}} \dot{t}_{n}<_{T} \dot{t}_{n+1}$, and $\dot{t}_{n} \in \mathrm{HS}$.

Theorem

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. Suppose that \mathbb{P} is σ-closed and \mathscr{F} is σ-complete, then $\mathbb{1} \Vdash^{\mathrm{HS}} \mathrm{DC}$.

Remark

We can replace σ-closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in \mathrm{HS}$ such that $p \Vdash^{\mathrm{HS}}$ " \dot{T} is a tree without maximal nodes". We define a sequence of conditions, p_{n}, and a sequence of names, \dot{t}_{n}, such that $p_{n+1} \leqslant p_{n}, p_{n+1} \Vdash^{\mathrm{HS}} \dot{t}_{n}<_{T} \dot{t}_{n+1}$, and $\dot{t}_{n} \in \mathrm{HS}$.
Since \mathbb{P} is σ-closed, let $q \leqslant p_{n}$ for all $n<\omega$;

Theorem

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. Suppose that \mathbb{P} is σ-closed and \mathscr{F} is σ-complete, then $\mathbb{1} \Vdash^{\mathrm{HS}} \mathrm{DC}$.

Remark

We can replace σ-closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in \mathrm{HS}$ such that $p \Vdash^{\mathrm{HS}}$ " \dot{T} is a tree without maximal nodes". We define a sequence of conditions, p_{n}, and a sequence of names, \dot{t}_{n}, such that $p_{n+1} \leqslant p_{n}, p_{n+1} \Vdash^{\mathrm{HS}} \dot{t}_{n}<_{T} \dot{t}_{n+1}$, and $\dot{t}_{n} \in \mathrm{HS}$. Since \mathbb{P} is σ-closed, let $q \leqslant p_{n}$ for all $n<\omega$; since \mathscr{F} is σ-complete, $H=\bigcap_{n<\omega} \operatorname{sym}\left(\dot{t}_{n}\right) \in \mathscr{F}$.

Theorem

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. Suppose that \mathbb{P} is σ-closed and \mathscr{F} is σ-complete, then $\mathbb{1} \Vdash^{\mathrm{HS}} \mathrm{DC}$.

Remark

We can replace σ-closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in \mathrm{HS}$ such that $p \Vdash^{\mathrm{HS}}$ " \dot{T} is a tree without maximal nodes". We define a sequence of conditions, p_{n}, and a sequence of names, \dot{t}_{n}, such that $p_{n+1} \leqslant p_{n}, p_{n+1} \Vdash^{\mathrm{HS}} \dot{t}_{n}<_{T} \dot{t}_{n+1}$, and $\dot{t}_{n} \in \mathrm{HS}$. Since \mathbb{P} is σ-closed, let $q \leqslant p_{n}$ for all $n<\omega$; since \mathscr{F} is σ-complete, $H=\bigcap_{n<\omega} \operatorname{sym}\left(\dot{t}_{n}\right) \in \mathscr{F}$. But it is clear that $\left\{\dot{t}_{n} \mid n<\omega\right\}^{\bullet} \in$ HS since H is a subgroup of its stabiliser.

Theorem

Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a symmetric system. Suppose that \mathbb{P} is σ-closed and \mathscr{F} is σ-complete, then $\mathbb{1} \Vdash^{\mathrm{HS}} \mathrm{DC}$.

Remark

We can replace σ-closed by c.c.c., and in fact by just requiring properness.

Proof.

Suppose that $\dot{T} \in \mathrm{HS}$ such that $p \Vdash^{\mathrm{HS}}$ " \dot{T} is a tree without maximal nodes". We define a sequence of conditions, p_{n}, and a sequence of names, \dot{t}_{n}, such that $p_{n+1} \leqslant p_{n}, p_{n+1} \Vdash^{\mathrm{HS}} \dot{t}_{n}<_{T} \dot{t}_{n+1}$, and $\dot{t}_{n} \in \mathrm{HS}$. Since \mathbb{P} is σ-closed, let $q \leqslant p_{n}$ for all $n<\omega$; since \mathscr{F} is σ-complete, $H=\bigcap_{n<\omega} \operatorname{sym}\left(\dot{t}_{n}\right) \in \mathscr{F}$. But it is clear that $\left\{\dot{t}_{n} \mid n<\omega\right\}^{\bullet} \in \mathrm{HS}$ since H is a subgroup of its stabiliser. And of course,
$q \|^{\mathrm{HS}}\left\{\dot{t}_{n} \mid n<\omega\right\}{ }^{\bullet}$ is an infinite chain in \dot{T}.

We have a preservation theorem for AC_{ω}, and in fact for a broader family of indices.

We have a preservation theorem for AC_{ω}, and in fact for a broader family of indices.

However, the context for setting it up is far too elaborate to set up.

We have a preservation theorem for AC_{ω}, and in fact for a broader family of indices.

However, the context for setting it up is far too elaborate to set up.
But as a curiosity, here is the theorem, in the particular case for AC_{ω} :

We have a preservation theorem for AC_{ω}, and in fact for a broader family of indices.

However, the context for setting it up is far too elaborate to set up.
But as a curiosity, here is the theorem, in the particular case for AC_{ω} :
Theorem (K.)
Let $\langle\mathbb{P}, \mathscr{G}, \mathscr{F}\rangle$ be a mixable symmetric system admitting an absolute representative. Since $\check{\omega}$ is injective and densely measurable, $1 \Vdash^{\mathrm{HS}} \mathrm{AC}_{\omega}$.

What about BPI?

What about BPI?

Theorem

Suppose that $M \models$ SVC with X as a seed. The following are equivalent:
(1) $M \models \mathrm{BPI}$.

What about BPI?

Theorem

Suppose that $M \models$ SVC with X as a seed. The following are equivalent:
(1) $M \models \mathrm{BPI}$.
(2) There is an ultrafilter on $X^{<\omega}$ containing $\left\{f \in X^{<\omega} \mid x \in \operatorname{rng} f\right\}$ for all $x \in X$.

Question

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives?

Question

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Question

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group).

Question

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself?

Question

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself? Clearly, many of the standard arguments will work by replacing $\operatorname{Add}(\omega, X)$ by $\operatorname{Add}(\kappa, X)$,

Question

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself? Clearly, many of the standard arguments will work by replacing $\operatorname{Add}(\omega, X)$ by $\operatorname{Add}(\kappa, X)$, or by adding Sacks,

Question

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself? Clearly, many of the standard arguments will work by replacing $\operatorname{Add}(\omega, X)$ by $\operatorname{Add}(\kappa, X)$, or by adding Sacks, random,

Question

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself? Clearly, many of the standard arguments will work by replacing $\operatorname{Add}(\omega, X)$ by $\operatorname{Add}(\kappa, X)$, or by adding Sacks, random, Hechler,

Question

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself? Clearly, many of the standard arguments will work by replacing $\operatorname{Add}(\omega, X)$ by $\operatorname{Add}(\kappa, X)$, or by adding Sacks, random, Hechler, Laver,

Question

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself? Clearly, many of the standard arguments will work by replacing $\operatorname{Add}(\omega, X)$ by $\operatorname{Add}(\kappa, X)$, or by adding Sacks, random, Hechler, Laver, or any other kind of generic reals.

Question

Is there an equivalent condition, or even just a "usable condition" for preserving AC_{ω} and its relatives? What about BPI?

Remark

In the context of permutation models, defined for ZF with atoms, we do have an equivalent condition for preserving BPI, which is the filter of subgroups is Ramsey in a nontrivial way (equivalently, the topology defined from the filter gives rise to an extremely amenable and non-trivial group). But it is not clear how this translates to ZF and symmetric extensions.

Question

How much are these conditions depend on the forcing itself? Clearly, many of the standard arguments will work by replacing $\operatorname{Add}(\omega, X)$ by $\operatorname{Add}(\kappa, X)$, or by adding Sacks, random, Hechler, Laver, or any other kind of generic reals. Or do they?

Thank you

 For
Your attention!

Some suggested reading...

(1) K., Iterating symmetric extensions. J. symb. log. 84 (2019), 123-159 (arXiv:1606.06718).
(2) K., Preserving Dependent Choice. Bulletin Polish Acad. Sci. Math. 67 (2019), 19-29 (arXiv:1810.11301).
(3) K., Realizing realizability results with classical constructions. Bull. symb. log. 25 (2019) 429-445 (arXiv:1905.08202).
(a) K.-Schweber, Choiceless Chain Conditions. Eur. J. Math., accepted for publication (arXiv:2106.03561).
(5) K.-Schilhan, Sequential and distributive forcings without choice. Under review (arXiv:2112.14103).

