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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

Mikhail Suslin, Originator of the Suslin Problem

Mihaiĺ �ḱovleviq Suślin

Transliteration: Mikhail Yakovlevich Suslin (Souslin)
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

Mikhail Suslin: Brief Biography

Mikhail Suslin (1894-1919) was a Russian mathematician. He was a
student of Nikolai Luzin starting in the 1914-15 academic year and
studied descriptive set theory and topology.

In his short mathematical career of around five years, his main
mathematical contributions are:

1 introducing the idea of analytic sets in descriptive set theory;
2 asking a question now known as the famous Suslin problem,

which remained open for around 50 years and eventually led to
major advances in set theory.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

Mikhail Suslin: Brief Biography

Suslin published a total of three short articles, only one of which
appeared during his lifetime.

The Suslin problem was published as Problem 3 in a list of ten open
problems by various mathematicians published in 1920 in the very first
issue of Fundamenta Mathematica ([S1920]).

Suslin passed away in 1919 as a result of typhus at the age of 24.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

The Suslin Problem

Translation:

Problem 3). Let a linearly ordered set without gaps or jumps have the
property that every set of non-overlapping intervals (each containing at
least one element) is at most countable. Will this set necessarily be
the (usual) linear continuum?
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

The Suslin Problem

Theorem (Cantor)
Let L be a dense linear order without endpoints which is complete and
separable (that is, has a countable dense subset). Then L is
isomorphic to the real line R.

Question (Suslin’s Problem)
Let L be a dense linear order without endpoints which is complete and
has the countable chain condition (that is, every pairwise disjoint family
of non-empty open intervals is countable). Is L isomorphic to the real
line R (or equivalently, is L separable)?

Question (Equivalent to Suslin’s Problem)
Is every linear order L with the countable chain condition necessarily
separable?
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

The Suslin Hypothesis

A Suslin continuum is a complete dense linear order without endpoints
which is c.c.c. but not separable.

A Suslin line is a linear order which is c.c.c. but not separable.

A Suslin continuum exists iff a Suslin line exists.

Definition
The Suslin Hypothesis (SH) is the statement that there does not exist a
Suslin line.
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Ðuro Kurepa
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

Ðuro Kurepa

One of the earliest and most notable scholars to work on the Suslin
problem was the Serbian mathematician Ðuro Kurepa (1907-1993).

In his doctoral dissertation of 1935, written under the supervision of M.
Fréchet, Kurepa gave the first ever systematic study of trees.

In his dissertation, Kurepa introduced and analyzed many fundamental
ideas which are now considered the foundation of the subject.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

Kurepa’s Contributions

An overview of some of Kurepa’s many important contributions to the
theory of trees:

(1) Introduced Aronszajn, Suslin, and Kurepa trees ([K1935], [K1937],
[K1943]);

(2) In unpublished work Nachman Aronszajn proved the existence of
an Aronszajn tree in 1934. Kurepa produced other Aronszajn trees
including the first example of a special Aronszajn tree ([K1937]);

(3) Introduced normal trees and lexicographical orderings of trees
([K1935]);

(4) Proved that there is a Suslin line iff there is a Suslin tree ([K1935]);
(5) Proved that any two infinitely branching trees of countable height

are isomorphic, and posed the question of whether this is also
true for Aronszajn trees ([K1935]);
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

Kurepa’s Contributions

(6) Proved that for any tree T of height a regular uncountable cardinal
κ such that for some λ < κ, the levels of T have size less than λ,
T has a cofinal branch ([K1935]);

(7) Introduced special Aronszajn trees ([K1937]), and proved the
existence of an Aronszajn tree which embeds into the rationals
([K1937]);

(8) Proved that any partial order is the union of countably many
antichains iff it embeds into the rationals ([K1940]);

(9) Supervised the PhD dissertation of Stevo Todorčević, who went
on to become one of the world’s leading set theorists (1979).
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

Suslin Lines and Suslin Trees

The earliest major result concerning the Suslin problem is the
equivalence between the existence of a Suslin line and a Suslin tree.

Theorem
There exists a Suslin line iff there exists a Suslin tree.

This theorem was proven independently by three authors:
1 Kurepa in his 1935 dissertation ([K1935]);
2 Edwin Miller in a 1943 article ([M1943] published posthumously);
3 Wacław Sierpiński in a 1948 article ([S1948]).
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

Miller’s Theorem, Excerpt From His 1943 Article

Miller’s proof used some ideas from his earlier paper with B. Dushnik,
“Partially Ordered Sets”, which contains the famous theorem that for
every infinite cardinal κ, κ→ (κ, ω)2 ([DM1941]).

According to a note by the publisher, Miller passed away two weeks
after submitting the article in July 1942.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

The Suslin Number

Definition
The Suslin number of a topological space is the supremum of the set
of cardinalities of any family of pairwise disjoint open sets.

Note that by definition, the Suslin number of a Suslin line (in the order
topology) is ω.

Here is another early theorem related to the Suslin problem due to
Kurepa:

Theorem (Kurepa [K1950])
Suppose that L is a Suslin line. Then the Suslin number of L× L (in the
product topology) is equal to ω1.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

The Gaifman and Specker Theorem

Kurepa asked whether any two infinitely splitting Aronszajn trees are
isomorphic ([K1935]), a problem which he referred to as “premier
problème miraculeux.” It took almost 30 years to solve.

Theorem (Gaifman and Specker [GS1964])
There exists a family of 2ω1-many pairwise non-isomorphic infinitely
splitting normal Aronszajn trees.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

Cohen Invents Forcing

In 1963, Paul Cohen invented the method of forcing, which provided a
powerful technique for proving independence results in set theory
([C1966]).

Previously, Kurt Gödel had shown that ZF is consistent with the axiom
of choice (AC) and the continuum hypothesis (CH) by developing the
idea of the constructible universe L ([G1940]).

In the other direction, Cohen used forcing to construct models of
ZF + ¬AC and ZFC + ¬CH. In combination with Gödel’s work, these
models demonstrated that the axiom of choice does not follow from ZF
and the continuum hypothesis does not follow from ZFC.

With the method of forcing now available, a few years later the Suslin
problem was finally solved.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

A Solution to the Suslin Problem

Suslin’s problem was solved by showing that the existence of a Suslin
tree can neither be proved nor disproved in the theory ZFC.

The consistency of the negation of Suslin’s hypothesis was established
independently by Thomas Jech and Stanley Tennenbaum.

Theorem (Jech [J1967], Tennenbaum [T1968])
There exists a forcing poset which forces the existence of a Suslin tree.
Therefore, ¬SH is consistent with ZFC.

Jech’s forcing adds a Suslin tree with countable conditions, and
Tennenbaum’s forcing adds a Suslin tree with finite conditions.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

A Solution to the Suslin Problem

A non-forcing proof of the consistency of ZFC + ¬SH was given by
Jensen using Gödel’s constructible universe L.

Theorem (Jensen [J1968])
If ♦ holds, then there exists a Suslin tree. In particular, if V = L then
¬SH holds.

The more difficult direction in the independence of the Suslin
hypothesis was proved later by Solovay and Tennenbaum, who built a
model of ZFC + SH.

Theorem (Solovay and Tennenbaum [ST1971])
There exists a forcing poset which forces Martin’s axiom plus ¬CH,
and in particular, forces that there does not exist a Suslin tree.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

Invention of Iterated Forcing and Forcing Axioms

The Solovay and Tennenbaum proof of the consistency of SH involved:

1 developing the new technique of iterated forcing (specifically, finite
support forcing iterations of c.c.c. forcings), and

2 establishing the consistency of the first forcing axiom, Martin’s
axiom (named after its originator Donald Martin).

These two developments had a transformative effect on the field of set
theory. For these and other reasons, such as its impact on the theory
of trees, the Suslin problem ranks among the most significant problems
in the history of set theory, comparable to Cantor’s continuum problem.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

Suslin’s Hypothesis and the Continuum Hypothesis

A natural question is whether there is any relationship between SH and
CH.

The Jech and Tennenbaum models of ¬SH satisfy CH. Adding any
number of Cohen reals preserves a Suslin tree, so ¬SH + ¬CH is
consistent as well.

The Solovay and Tennenbaum model of SH satisfies ¬CH. It took an
ingenious argument of Jensen to prove the consistency of SH + CH.

Theorem (Jensen; Devlin and Johnsbraten [DJ1974])
Assume GCH, ♦∗, and �ω1 . Then there exists a forcing poset which
forces that CH holds and there does not exist a Suslin tree.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Brief History of the Suslin Problem

Jensen’s Proof and Shelah’s Proper Forcing

Jensen’s model of SH + CH did not use iterated forcing in the way we
think of it nowadays, but rather involved defining a sequence of Suslin
trees

〈T ν : ν < ω2〉,

together with projection mappings, and forcing with the direct limit.
Given T ν , a Suslin tree T ν+1 is defined which adds a cofinal branch to
T ν and specializes an Aronszajn tree in V Tν . No reals are added
because forcing with Suslin trees does not add countable sets.

In the 1980’s Shelah developed a more general and flexible method for
iterating forcing while not adding reals, as part of his theory of proper
forcing, and used his method to produce an alternative model of
SH + CH ([S1982]).
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Review of Basic Definitions and Notation

Definition
A strict partial order (T , <T ) is tree-like if for all x ∈ T , the set
{y ∈ T : y <T x} is linearly ordered by <T .

Definition
A tree is a strict partial order (T , <T ) such that for every x , the set
{y ∈ T : y <T x} is well-ordered by <T .
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Review of Basic Definitions and Notation

Let T be a tree. For x ∈ T , the order type of {y ∈ T : y <T x} is the
height of x in T , denoted htT (x).

For all α < htT (x), we write x � α for the unique y <T x with height α.

For any ordinal α, Tα := {x ∈ T : htT (x) = α} is the α-th level of T .
The height of T is the least δ such that Tδ = ∅.

For any ordinal α, T � α := {x ∈ T : htT (x) < α}. More generally, if A is
a set of ordinals, then T � A := {x ∈ T : htT (x) ∈ A}.

In these talks we will mostly be interested in trees of height ω1.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Review of Basic Definitions and Notation

Elements x and y of T are comparable if x ≤T y or y <T x , and
otherwise are incomparable.

A chain is a subset of T consisting of comparable elements, and an
antichain is a subset of T consisting of incomparable elements.

A branch of T is a maximal chain. A branch is cofinal if it meets every
level of T .

If b is a branch of T and α is less than the order type of b, we will write
b(α) for the unique element of b with height α.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Review of Basic Definitions and Notation

Definition
An ω1-tree is a tree of height ω1 whose levels are countable.

Definition
An Aronszajn tree is an ω1-tree with no cofinal branch (equivalently, no
uncountable chain).

Definition
A Suslin tree is a tree of height ω1 with no uncountable chains and no
uncountable antichains.

Since the levels of a tree are antichains, every Suslin tree has
countable levels and hence is an Aronszajn tree.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Review of Basic Definitions and Notation

Definition
A tree T is normal if it satisfies the following properties:

1 T has a root, which is the unique element with height 0;
2 every element of T not at the maximal level of the tree (if it exists),

has at least two immediate successors;
3 (unique limits) if x and y have height δ, where δ is a limit ordinal,

then there exists some α < δ such that x � α 6= y � α;
4 if x is in T then there exists an element above x at any higher level

of T .

Different authors use somewhat different definitions of normal, but in
all variations (4) is always required.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Review of Basic Definitions and Notation

If T is a normal ω1-tree, then T is Suslin iff T has no uncountable
antichains.

For any cardinal λ, a tree T is λ-ary if every element of T has exactly
λ-many immediate successors.

We are mostly interested in normal ω1-trees which are either binary,
which means 2-ary, or infinitely splitting, which means ω-ary.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Review of Basic Definitions and Notation

If T is a tree, a subtree of T is any subset of T considered as a tree
equipped with the ordering inherited from T .

A subset X ⊆ T is downwards closed if whenever x ∈ X and y <T x ,
then y ∈ X .

If X is a downwards closed subtree of T then the height functions htT
and htX agree on X .

The downward closure of a set X ⊆ T is the set

{y ∈ T : ∃x ∈ X y ≤T x}.

If X ⊆ T and X is a Suslin tree, then the downward closure of X is also
a Suslin tree.

John Krueger (UNT) Tutorial on Suslin Trees YSTW 2022 32 / 210



Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Nowhere Suslin Trees

Definition
A tree T of height ω1 is nowhere Suslin if every uncountable subset of
T contains an uncountable antichain.

Lemma
If T is an Aronszajn tree, then T is nowhere Suslin iff T has no Suslin
subtree.

So for an Aronszajn tree T , T being not nowhere Suslin means that T
contains a Suslin subtree, not that T itself is Suslin.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Special Trees

Definition
A tree T is special if T is the union of countably many antichains.

Being special is equivalent to the existence of a specializing function,
which is a function f : T → ω such that x <T y implies f (x) 6= f (y).

Note that if T is a special tree, then T does not have an uncountable
chain and T has an uncountable antichain. Any subtree of a special
tree is also special. Hence, any special tree is nowhere Suslin.

Theorem (Kurepa [K1937])
There exists a special Aronszajn tree.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Trees Embeddable Into Linear Orders

Definition
A map h : P → Q between partial orders is strictly increasing if x <P y
implies h(x) <Q h(y).

Definition
For a linear order L, a tree T is L-embeddable if there exists a strictly
increasing map h : T → L.

Theorem (Kurepa [K1940])
A tree is special iff it is Q-embeddable.

Theorem
There exists an ω1-tree T for which there exists a continuous strictly
increasing map h : T → Q.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Baumgartner’s Dissertation of 1970

The study of embeddings of trees into linear orders was initiated by
Kurepa.

This topic was explored further in the doctoral dissertation of James
Baumgartner in 1970.

We survey some of the results of Baumgartner’s dissertation as well as
some unpublished results of Fred Galvin and Richard Laver which
appear there.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Baumgartner’s Dissertation

Theorem (Galvin (unpublished); Baumgartner [B1970])

Let T be a tree of height ω1. Then T is R-embeddable iff
T � {α + 1 : α < ω1} is special.

Proposition (Baumgartner [B1970])

For a tree T of height ω1, if T � {α + 1 : α < ω1} is nowhere Suslin,
then T is nowhere Suslin.

If T is R-embeddable, then T � {α + 1 : α < ω1} is special and hence
nowhere Suslin. So by the above proposition, T is nowhere Suslin.
Consequently:

Proposition
If T is a tree of height ω1 which is R-embeddable, then T has no
uncountable chains and is nowhere Suslin.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

The Tree T ∗

Note that for any set X ,

<ω1X := {f : ∃α < ω1 f : α→ X},

ordered by strict subset, is a tree of height ω1.

Definition
Let T ∗ be the subtree of <ω1ω consisting of injective functions.

Note that T ∗ has no uncountable chains.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

The Tree T ∗

Theorem (Laver (unpublished); Baumgartner [B1970])
The tree T ∗ is not special.

Theorem (Baumgartner [B1970])

A tree T is R-embeddable iff there exists a strictly increasing map of T
into T ∗.

In particular, T ∗ itself is R-embeddable.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

The Tree T ∗

So T ∗ is an example of a tree of height ω1 which is R-embeddable but
not special. Consequently:

Theorem
The statement that every tree with no uncountable chains is special is
disprovable in ZFC.

Of course T ∗ is not an ω1-tree because it has levels of size 2ω.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

The Shift Operator S on Trees

Definition
Let T be a tree of height ω1. The shift of T , denoted by S(T ), is the
unique smallest tree satisfying that

S(T ) � {α + 1 : α < ω1} = T .

In other words, we shift every element of T up by one level, and add
unique limits at limit levels to chains which already had upper bounds
in T .

Note that S(T ) also has height ω1, and if T is an ω1-tree then so is
S(T ).
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

The Tree S(T ∗)

Let us apply the shift operator to the tree T ∗.

Consider S(T ∗). Then

S(T ∗) � {α + 1 : α < ω1} = T ∗,

which:
(a) is not special, and
(b) is nowhere Suslin.

By (a), S(T ∗) is not R-embeddable. By (b), S(T ∗) is nowhere Suslin.

John Krueger (UNT) Tutorial on Suslin Trees YSTW 2022 42 / 210



Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

The Trees T ∗ and S(T ∗)

The trees T ∗ and S(T ∗) are witnesses to the following theorems.

Theorem (Baumgartner [B1970])

There exists a tree of height ω1 which is R-embeddable and not
Q-embeddable.

Theorem (Baumgartner [B1970])

There exists a tree of height ω1 which is nowhere Suslin but not
R-embeddable.

These theorems prove that the implications

special =⇒ R-embeddable =⇒ nowhere Suslin

cannot be reversed.
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Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Results of Baumgartner’s Dissertation

Theorem (Baumgartner [B1970])

The following statements are equivalent:
1 Every Aronszajn tree is special;
2 Every Aronszajn tree is R-embeddable.

Proof.
(1)⇒ (2): Immediate because being special is equivalent to being
Q-embeddable.

(2)⇒ (1): Suppose that T is an Aronszajn tree which does not embed
into Q. Then S(T ) is an Aronszajn tree satisfying that
S(T ) � {α + 1 : α < ω1} = T is not special. So S(T ) is not
R-embeddable.

John Krueger (UNT) Tutorial on Suslin Trees YSTW 2022 44 / 210



Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Results of Baumgartner’s Dissertation

Theorem (Baumgartner [B1970])

MA + ¬CH implies that every tree with no uncountable chains and size
less than 2ω has a strictly increasing and continuous map into Q, and
in particular, that all Aronszajn trees are special.

Theorem (Baumgartner, Malitz, and Reinhardt [BMR1970])

MA + ¬CH implies that every tree-like partial order of size less than 2ω

with no uncountable chains embeds into Q.

As we described above, T ∗ is a tree of size 2ω with no uncountable
chains which is not special.
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Results of Baumgartner’s Dissertation

As we have discussed, in ZFC we can prove that the properties of
being special, R-embeddable, and nowhere Suslin are distinct for trees
of height ω1. For ω1-trees, the best we can get is a consistency result.

Theorem (Baumgartner [B1970])

Assume that V = L[A] for some set A ⊆ ω1. Then there exists an
R-embeddable Aronszajn tree which is not special.

Applying the shift operator to a tree as in the above theorem, it follows
that under the same assumption there exists a nowhere Suslin
Aronszajn tree which is not R-embeddable. In addition, these facts
remain true after forcing arbitrarily many Cohen reals ([B1970]).

This concludes the discussion of Baumgartner’s dissertation.
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The Diamond Principle

The constructibility assumption in the above theorem was soon
replaced by the diamond principle and its variations. Starting with
Jensen, it was recognized that a great variety of Aronszajn and Suslin
trees can be constructed with diamond.

Theorem (Devlin [D1972])
Assume ♦. Then there exist 2ω1 many pairwise non-isomorphic
Aronszajn trees which are R-embeddable but not special.

Theorem (Kunen, K., Larson, J., and Steprāns, J. [KLS2012])
Assume ♦. Then for any set A ⊆ R which contains no perfect subset,
there exists a special Aronszajn tree which has no continuous strictly
increasing map into A. In particular, this statement holds for A = Q.
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Stationary Antichains and Club Antichains

Definition
Let T be an ω1-tree. An antichain A ⊆ T is a stationary antichain if the
set

{htT (x) : x ∈ A}

is a stationary subset of ω1.

An antichain A ⊆ T is a club antichain if the set

{htT (x) : x ∈ A}

is a club subset of ω1.
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Special Trees Have Stationary Antichains

Lemma
Let T be a special Aronszajn tree. Then T has a stationary antichain.

Proof.
Let f : T → ω be a specializing function. For each α < ω1 choose
some xα ∈ Tα.

By the pressing down lemma, there is a stationary set X ⊆ ω1 on
which the map α 7→ f (xα) is constant.

Then
{xα : α ∈ X}

is a stationary antichain.
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Results on Stationary Antichains

Theorem (Shelah [S1982])
Assuming ♦, there exists a special Aronszajn tree with no club
antichain.

In comparison, MAω1 implies that every Aronszajn tree is special and
has a club antichain.

Theorem (Shelah [S1982])
Assuming ♦, there exists an Aronszajn tree which is R-embeddable,
not special, and contains no club antichain.

Theorem (Shelah [S1982])
Assuming ♦∗, there exists an Aronszajn tree which is R-embeddable
and contains no stationary antichain.
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Almost Suslin Trees

Definition
An ω1-tree with no stationary antichain is called an almost Suslin tree.

Any special Aronszajn tree is not an almost Suslin tree. So MAω1

implies that there does not exist an almost Suslin tree.
Every Suslin tree is an almost Suslin tree, but the converse is provably
false.

Theorem (Devlin and Shelah [DS1979])
If there exists a Suslin tree, then there exists an almost Suslin tree
which is not a Suslin tree.

Almost Suslin trees do not have to be Aronszajn trees; see for example
Todorčević [T1984, Section 4].
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Generic Reals and Suslin Trees

Theorem (Shelah [S1984])

Cohen forcing Add(ω) forces that there exists a Suslin tree.

Theorem (Todorčević [T2007, page 39])

Cohen forcing Add(ω) forces that there exists an R-embeddable
Aronszajn tree with no stationary antichain.
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Generic Reals and Suslin Trees

Laver proved that the same is not true for random reals.

Theorem (Laver [L1987])
Assuming MAω1 , forcing any number of random reals with the product
measure will force that all Aronszajn trees are special.

So SH is consistent with an arbitrarily large continuum of any
uncountable cofinality. In particular, SH is consistent with 2ω being
singular.
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Special Subtrees

Theorem
Assuming ♦∗, for every stationary and costationary set S ⊆ ω1, there
exists a non-special Aronszajn tree T such that T � S is special and
T � (ω1 \ S) has no stationary antichain.

On the other hand, if T restricted to a club is special, then so is T .

Proposition
Suppose that T is an ω1-tree, C ⊆ ω1 is a club, and T � C is special.
Then T is special.
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Special Subtrees

Proof.
Fix a specializing function g : T � C → ω.

For each x ∈ T � C, let βx = min(C \ (htT (x) + 1), and fix a bijection

hx : {y ∈ T � [htT (x), βx ) : x ≤T y} → ω.

Define f : T → ω × ω as follows. Given y ∈ T , let αy be the largest
element of C ∩ (htT (y) + 1), which exists because C is club. Define

f (y) := (g(y � αy ),gy�α(y)).

Then y <T z implies f (y) 6= f (z) as is easy to check.
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S-st-Special

Definition (Shelah [S1982])
Let S ⊆ ω1 be a stationary set of limit ordinals. An ω1-tree T is
S-st-special if there exists a function f : T � S → ω1 such that:

1 for all x ∈ T � S, f (x) < htT (x);
2 for all x <T y in T � S, f (x) 6= f (y).

If T is (ω1 ∩ Lim)-st-special, then T is special. But if S ⊆ ω1 is
stationary and co-stationary, then T being S-st-special does not imply
that T � S is special.

Lemma
If T is S-st-special then T is Aronszajn and has a stationary antichain
(and hence is not Suslin).
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Back to Suslin’s Hypothesis

A natural question is whether SH is equivalent to the statement that all
Aronszajn trees are special. All of the early models of SH satisfy that
all Aronszajn trees are special (namely, any model of MAω1 and
Jensen’s model of CH + ¬SH).

Theorem (Shelah [S1982])
SH does not imply that every Aronszajn is special. Namely, it is
consistent that there exists a stationary and costationary set S ⊆ ω1
such that:

1 every Aronszajn tree is S-st-special (and hence not Suslin);
2 there exists an Aronszajn tree T such that T � (ω1 \ S) has no

stationary antichain (and hence T is not special).
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Back to Suslin’s Hypothesis

Shelah’s proof used a complicated kind of forcing iteration called an
“ω1-free iteration,” which is variation of a countable support forcing
iteration. Both Shelah’s theorem and the technique he used to prove it
were improved by Chaz Schlindwein.

Theorem (Schlindwein [S1993])
Let T be an Aronszajn tree with no stationary antichain. There is a
property of a forcing poset called T -proper which implies that the
forcing is proper and does not add a stationary antichain to T , and
moreover, being T -proper is preserved by any countable support
forcing iteration.
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Back to Suslin’s Hypothesis

Theorem (Schlindwein [S1993])
It is consistent that SH holds and there exists a non-special Aronszajn
tree with no stationary antichain.

Other applications of Schlindwein’s forcing preservation theorem are
given in K. “A forcing axiom for a non-special Aronszajn tree” ([K2020]).
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Club Isomorphisms

Recall the result of Gaifman and Specker [GS1964] that there exist
2ω1-many pairwise non-isomorphic normal Aronszajn trees.

In 1985 Abraham and Shelah introduced the following weakening of
the isomorphism relation on trees.

Definition (Abraham and Shelah [AS1985])
Let T and U be trees of height ω1. Then T and U are club isomorphic
if there exists a club C ⊆ ω1 and an isomorphism f : T � C → U � C. In
that case, f is called a club isomorphism.

The pairwise non-isomorphic Aronszajn trees given in Gaifman and
Specker’s article are all club isomorphic.
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Club Isomorphisms

Lemma
Let T and U be normal ω1-trees. Then T and U are club isomorphic iff
there exists an unbounded set X ⊆ ω1 such that T � X and U � X are
isomorphic.

Sketch.
Let f : T � X → U � X be an isomorphism. Let C := X ∪ lim(X ). Define
f+ : T � C → U � C extending f as follows.

Let x ∈ T � lim(X ) have height δ. By the normality of T pick some
z ≥T x in T � X . Define f+(x) := f (z) � δ. Use the normality of T and
U to show that this works.
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An Essentially Unique Aronszajn Tree

Abraham and Shelah [AS1985] introduced the hypothesis that there
exists an essentially unique Aronszajn tree:

Any two normal Aronszajn trees are club isomorphic.

This hypothesis implies that all Aronszajn trees are special. Namely,
there exists a special normal Aronszajn tree, and any other normal
Aronszajn tree is club isomorphic to it. But if a tree is special on a club
of levels, then it is special.

In particular, the hypothesis of an essentially unique Aronszajn tree is
a logical strengthening of SH.
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An Essentially Unique Aronszajn Tree

Theorem (Abraham and Shelah [AS1985])
Let T and U be normal Aronszajn trees. Then there exists a forcing
poset of size ω1 which is proper and adds a club isomorphism between
T and U.

Corollary
The proper forcing axiom implies that any two normal Aronszajn trees
are club isomorphic.

In fact, by a forcing iteration theorem of Shelah, any countable support
forcing iteration of proper forcings of size ω1 with length ω2 is proper
and ω2-c.c. So a model of an essentially unique Aronszajn tree can be
obtained without large cardinals.

John Krueger (UNT) Tutorial on Suslin Trees YSTW 2022 63 / 210



Part 1: Suslin’s Hypothesis and Aronszajn Trees A Survey of Aronszajn Trees

Club Isomorphisms and Martin’s Axiom

Theorem (Abraham and Shelah [AS1985])
MAω1 does not imply that any two normal Aronszajn trees are club
isomorphic.

In particular, the hypothesis that all Aronszajn trees are special does
not imply that there is an essentially unique Aronszajn tree.

Theorem (Abraham and Shelah [AS1985])
It is consistent to have Martin’s axiom, any two normal Aronszajn trees
are club isomorphic, and 2ω arbitrarily large.
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Families of Non-Club-Isomorphic Aronszajn Trees

Recall that neither SH nor the hypothesis that every Aronszajn tree is
special have any impact on the value of 2ω. In contrast:

Theorem (Abraham and Shelah [AS1985])
Suppose the weak diamond principle holds (equivalently, 2ω < 2ω1).
Then there exists a family of 2ω1 many normal pairwise
non-club-isomorphic special Aronszajn trees.

Theorem (Todorčević [T1984])
Suppose that there exists an Aronszajn tree with no stationary
antichain. Then there exists a family of 2ω1 many normal pairwise
non-club-isomorphic Aronszajn trees.
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Homogeneity Properties of Aronszajn Trees

After Suslin trees were first shown to be consistent by Jech,
Tennenbaum, and Jensen in the 1960’s, one of the earliest topics
studied about Suslin trees was the existence or non-existence of
automorphisms.

Definition
An automorphism of a tree T is a bijection f : T → T such that for all
a,b ∈ T ,

a <T b ⇐⇒ f (a) <T f (b).

An automorphism is non-trivial if it is not the identity function.
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Homogeneous and Rigid

Definition
A tree T is homogeneous if for all a and b in T of the same height,
there exists an automorphism σ : T → T such that σ(a) = b and
σ(b) = a.

Definition
A tree T is rigid if it has no non-trivial automorphisms.

These ideas were studied by Jensen [J1969] and Jech [J1972], and
Jensen’s work on this topic appears in the Devlin and Johnsbråten
book “The Souslin Problem” [DJ1974].
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Rigid and Totally Rigid

Definition
For any tree T and a ∈ T , Ta := {b ∈ T : a ≤T b}.

Definition
A tree T is totally rigid if for all distinct a and b of the same height, Ta
and Tb are not isomorphic.

Suppose that T is not rigid. Let σ : T → T be an automorphism and a
and b distinct elements such that σ(a) = b. Then σ � Ta is an
isomorphism between Ta and Tb.

So any totally rigid tree is rigid.
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Homogeneous Trees

Lemma
A tree T of height ω1 is homogeneous iff for any distinct a and b of T of
the same height, Ta and Tb are isomorphic.

Lemma
If a tree T of height ω1 is homogeneous, then for any distinct a and b of
T , even of different heights, Ta and Tb are isomorphic.

John Krueger (UNT) Tutorial on Suslin Trees YSTW 2022 70 / 210



Part 1: Suslin’s Hypothesis and Aronszajn Trees Homogeneous and Rigid Aronszajn Trees

The Number of Automorphisms of an Aronszajn Tree

Definition
For a tree T , let σ(T ) denote the cardinality of the collection of all
automorphisms of T .

Theorem (Jech [J1972])
Let T be a normal ω1-tree.

1 σ(T ) is either finite or 2ω ≤ σ(T ) ≤ 2ω1 ;
2 if σ(T ) is infinite, then σ(T )ω = σ(T );
3 if T contains no Suslin subtree and σ(T ) is infinite, then σ(T ) has

cardinality either 2ω or 2ω1 .
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The Number of Automorphisms of an Aronszajn Tree

Theorem (Jech [J1972])
Assume CH and κω = κ. Then there exists a countably closed
ω2-c.c.c. forcing which adds a Suslin tree T such that |σ(T )| = κ.

In other words, it is consistent to have a Suslin tree T such that σ(T )
has cardinality equal to any prescribed value between 2ω and 2ω1 .

Theorem (Jensen [J1969]; Devlin and Johnsbråten [DJ1974])

Assuming ♦+, there exists a homogeneous Suslin tree S such that
σ(S) ≥ ω2.

Theorem (Todorčević [T1980])

There exists an Aronszajn tree T with σ(T ) = 2ω, and there exists an
Aronszajn tree U with σ(U) = 2ω1 .
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Rigid Aronszajn Trees

Jech [J1972] asked whether there exists in ZFC a rigid normal ω1-tree.
This problem was solved independently by Abraham and Todorčević,
making use of the construction of Gaifman and Specker.

Theorem (Abraham [A1979])
There exists a rigid normal Aronszajn tree.

Theorem (Todorčević [T1980])
There exist 2ω1 many pairwise non-isomorphic rigid normal Aronszajn
trees.
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ZFC + ¬SH

For most of the remainder of the talks, we will work in the theory
ZFC + ¬SH. In other words, we will assume that there exists a Suslin
tree.

As described earlier, the earliest models of this theory were obtained
as follows:

1 By Tennenbaum’s forcing with finite conditions;
2 By Jech’s forcing with countable initial segments;
3 In the constructible universe L, or from ♦ (Jensen).

We will consider other interesting models of ¬SH later in the talks.
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Suslin Trees as Forcing Notions

One of the most useful facts about Suslin trees which sets them apart
from other types of trees is that you can always force with a Suslin tree
without collapsing ω1.

Definition
Given any tree T , let PT denote the forcing poset with underlying set T
and ordered by b ≤PT a if a ≤T b.

Lemma
For any tree T and a,b ∈ T , a and b are comparable in T iff they are
compatible in PT .

Namely, if c ≤PT a,b then a,b ≤T c, so a and b are comparable by the
definition of a tree.
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Suslin Trees Are C.C.C. Forcings

Proposition
Let T be a normal ω1-tree. Then T is Suslin iff PT is c.c.c.

Namely, by the previous lemma, an antichain of the tree T is the same
as an antichain of the forcing PT . T is Suslin iff T has no uncountable
antichains iff PT has no uncountable antichains iff PT is c.c.c.

Proposition
Let T be a normal Suslin tree. If G is a generic filter on PT , then G is a
cofinal branch of T .
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Forcing With a Suslin Tree

In particular, if T is a normal Suslin tree, then

PT “T is not Aronszajn.”

An important question which will come up later in the talks is:

When you force with a normal Suslin tree T , which other Aronszajn
trees in the ground model are no longer Aronszajn in the generic
extension?
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Dense Open Sets in a Suslin Tree

The following fact about Suslin trees is extremely important and will be
used frequently in what follows.

Lemma
Let T be a Suslin tree. Then for any dense open set D ⊆ PT , there
exists some β < ω1 such that

T � [β, ω1) ⊆ D.

Proof.
Fix a maximal antichain A ⊆ D. Since T is Suslin, A is countable. So
there exists some β < ω1 such that A ⊆ T � β. If x ∈ T � [β, ω1), then
by the maximality of A, x is above some member of A. Since D is
open, x ∈ D.
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Suslin Trees Are Countably Distributive

An easy consequence of this lemma is that for any Suslin tree T , PT is
a countably distributive forcing poset.

Namely, if {Dn : n < ω} is a family of dense open subsets of PT , then
for each n < ω we can fix βn < ω1 such that

T � [βn, ω1) ⊆ Dn.

Fix β < ω1 larger than each βn. Then

T � [β, ω1) ⊆
⋂
n

Dn.

Hence,
⋂

n Dn is dense open.
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Suslin Algebras

Definition
A Suslin algebra is an atomless complete Boolean algebra which is
c.c.c. and countably distributive.

Definition
For any normal Suslin tree T , let BT denote the Boolean completion of
the forcing poset PT .

Definition
If T is a normal Suslin tree and T is a dense suborder of an atomless
complete Boolean algebra B, we say that T is a Suslinization of B.
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Suslin Algebras

Theorem (Jensen, Devlin and Johnsbråten [DJ1974])
Let B be an atomless complete Boolean algebra of size ω1. Then the
following are equivalent:

1 B is a Suslin algebra;
2 B = BT for some normal Suslin tree T (that is, B has a

Suslinization).

Proposition (Jensen; Devlin and Johnsbråten [DJ1974])
Let S and T be normal Suslin trees. Then the following are equivalent:

1 BS and BT are isomorphic;
2 S and T are club isomorphic.
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Trees of Sequences

We can often represent trees of height ω1 as trees consisting of
countable sequences of natural numbers.

Lemma
Let T be an infinitely splitting tree of height ω1 with a root and unique
limits. Then T is isomorphic to a downwards closed subtree U of
(<ω1ω,⊂) such that for all s ∈ U and n < ω, ŝn ∈ U.

Lemma
Let T be a binary tree of height ω1 with a root and unique limits. Then
T is isomorphic to a downwards closed subtree U of (<ω12,⊂) such
that for all s ∈ U and i < 2, ŝi ∈ U.
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Coherent Trees

An important example of a tree of sequences is a coherent tree.

Definition
Let 2 ≤ k ≤ ω. An ω1-tree T is coherent (on k ) if it is a downwards
closed subtree of (<ω1k ,⊂) such that for any s and t of T of the same
height,

|{β < dom(s) : s(β) 6= t(β)}| < ω.

A coherent tree T (on k ) is uniform (or homogeneously closed) if for all
s ∈ T , if t : dom(s)→ k is a function and

|{α ∈ dom(s) : s(α) 6= t(α)}| < ω,

then t ∈ T .
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Coherent Trees

If s : dom(s)→ k is a function, where k ≤ ω, a finite variation of s
(relative to k ) is any function t : dom(s)→ k such that

|{β ∈ dom(s) : s(β) 6= t(β)}| < ω.

In a coherent tree, any two elements of the same height are finite
variations of each other. A coherent tree is uniform iff it is closed under
finite variations.

Lemma
Any uniform coherent tree is normal.

For example, if s ∈ T and t ∈ T is on a higher level than s, then the
function s ∪ (t � [dom(s), dom(t))) is a finite variation of t and hence is
in T . So s has elements above it at any higher level.
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Existence of Coherent Aronszajn Trees

Theorem (Todorčević [T1987], [T2007])
There exists a uniform coherent Aronszajn tree.

Proof (Sketch).

By recursion one can define a sequence of functions 〈eα : α < ω1〉
satisfying:

1 each eα : α→ ω is injective;
2 each ω \ ran(eα) is infinite;
3 for all α < β, eα is a finite variation of eβ � α.

Let T be the tree of sequences of height ω1 so that for each α < ω1, Tα
is the set of all finite variations of eα.

A natural example of a uniform coherent Aronszajn tree is T (ρ1),
defined using walks on ordinals (Todorčević [T1987], [T2007]).
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Existence of Coherent Suslin Trees

Theorem (Jensen; Devlin and Johnsbråten [DJ1974])
Assuming ♦, there exists a uniform coherent Suslin tree.

Theorem (Todorčević [T1987])

Cohen forcing Add(ω) forces that there exists a uniform coherent
Suslin tree.

For the second theorem, start with a particular uniform coherent
Aronszajn tree T (which exists in ZFC), and let c : ω → 2 be a Cohen
real. Then

U := {c ◦ s : s ∈ T}

is a uniform coherent Suslin tree.
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An Application of Coherent Trees: Katětov’s Problem

Theorem (Katětov [KAT1948])
If the cube of a compact topological space is completely normal, then
the space is metrizable.

Katětov asked whether “cube” can be replaced by “square” in this
theorem.

This question turned out to be independent of ZFC. For one direction,
Nyikos [N1977] proved that under MAω1 , there is a counterexample,
namely, a non-metrizable compact space whose square is completely
normal. Gruenhage and Nyikos [GN1993] gave a counterexample
from CH.
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Katětov’s Problem: Suslin’s Axiom

In 2001, P. Larson and S. Todorčević introduced Suslin’s axiom, or
MAω1(S), and used it to prove the other direction of the independence
result.

Definition
Suppose that S is a uniform coherent Suslin tree. Then MAω1(S) is the
statement that for any c.c.c. forcing poset P which forces that S
remains Suslin, MAω1 holds for P.

Theorem (Larson and Todorčević [LT2002])

Assume MAω1(S) for a uniform coherent Suslin tree S. Then the Suslin
tree S forces that every compact space whose square is completely
normal is metrizable.
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Uniform Coherent Trees Are Homogeneous

Lemma
If T is a uniform coherent ω1-tree, then T is homogeneous.

Proof (Sketch).
Let a and b be distinct elements of T with the same height. Define
f : Ta → Tb by

f (s) := b ∪ (s � [dom(a), dom(s))).

It is easy to check that f is injective and s ⊂ t iff f (s) ⊂ f (t). The fact
that T is uniform is needed to show that f maps into Tb and that f is
surjective.
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The Number of Automorphisms

Theorem (Jensen; Devlin and Johnsbråten [DJ1974])

Let T be a uniform coherent Suslin tree. Then σ(T ) = 2ω.

Recall Jech’s result which says that for a normal ω1-tree T , if σ(T ) is
infinite then 2ω ≤ σ(T ) ≤ 2ω1 . Any homogeneous tree T satisfies that
σ(T ) ≥ ω1 (namely, we can find non-trivial automorphisms of T which
are the identity on T � α, for any α < ω1).

Proof.
Let T be a uniform coherent Suslin tree. Then T is homogeneous, so
σ(T ) ≥ ω1. By Jech’s result, σ(T ) ≥ 2ω.
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The Number of Automorphisms

Let us prove that σ(T ) ≤ 2ω. It suffices to show that any automorphism
h : T → T is determined by its restriction to T � β for some β < ω1.

Claim.
For all x ∈ T there is y >T x such that for all z >T y , the value of h(z)
is determined by z and h(y).

Suppose the claim is true. Let D be the set of such y . Then by the
claim, D is dense, and it is clearly open. So there exists some γ < ω1
such that T � [γ, ω1) ⊆ D. Then h is determined by the restriction of h
to Tγ .
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The Number of Automorphisms

To prove the claim, we will prove that for all x ∈ T there is y >T x such
that for all z >T y ,

∀γ ∈ [dom(y), dom(z)) z(γ) = h(z)(γ),

and hence h(z) = h(y) ∪ (z � [dom(y), dom(z))).

Suppose for a contradiction that x is a counterexample. For each
α < ω1, define Dx ,α to be the set of z ∈ T such that either z is not
above x , or z is above x and for some γ ≥ α,

z(γ) 6= h(z)(γ).

By the choice of x , each Dx ,α is dense open. Since T is Suslin, for
each α < ω1 we can fix some γα < ω1 such that T � [γα, ω1) ⊆ Dx ,α.
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The Number of Automorphisms

Let C be the club of limit ordinals δ < ω1 such that for all α < δ, γα < δ,
and hence T � [δ, ω1) ⊆ Dx ,α.

Fix δ ∈ C and z ∈ Tδ above x . Then for all α < δ, z ∈ Dx ,α, so there
exists some γ ∈ (α, δ) such that

z(γ) 6= h(z)(γ).

It follows that z and h(z) differ on an infinite set, which contradicts that
T is coherent.
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Strongly Homogeneous Trees

Definition
An infinitely splitting normal ω1-tree T is strongly homogeneous if there
exists a collection of functions ha,b for any a and b of T of the same
height satisfying:

1 each ha,b : Ta → Tb is an isomorphism and ha,b is the identity if
a = b;

2 (commutativity) hb,c ◦ ha,b = ha,c for all a, b, and c in T of the
same height;

3 if ha,b(c) = d then hc,d = ha,b � Tc ;
4 if c and d are distinct elements of limit height, then there are

a <T c and b <T d of the same height such that ha,b(c) = d .

John Krueger (UNT) Tutorial on Suslin Trees YSTW 2022 97 / 210



Part 2: Suslin Trees Coherent Suslin Trees

Strongly Homogeneous Trees

Strongly homogeneous trees appear in Larson [L1999] and Shelah
and Zapletal [SZ1999]. Larson [L1999] proved that ♦ implies the
existence of a strongly homogeneous Suslin tree.

Note that the property of being strongly homogeneous is upwards
absolute between transitive class models of ZFC with the same ω1.

It turns out that strongly homogeneous trees and uniform coherent
trees are the same.

Theorem (Bernhard König [K2003])

Let T be a normal infinitely splitting ω1-tree. Then T is strongly
homogeneous iff T is isomorphic to a uniform coherent tree (on ω).
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Strongly Homogeneous and Uniform Coherent Trees

It is not hard to show that any uniform coherent tree T is strongly
homogeneous using the isomorphisms ha,b : Sa → Sb given by

ha,b(s) := b ∪ (s � [dom(a), dom(s))).

For example, to prove property (4) consider a limit ordinal δ < ω1 and
distinct s and t in Tδ. Then s and t differ on a finite set, so we can find
some β < δ such that

∀γ ∈ [β, δ) s(γ) = t(γ).

Then

hs�β,t�β(s) = (t � β) ∪ (s � [β, δ)) = (t � β) ∪ (t � [β, δ)) = t .

The other direction is more difficult and we omit it.
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Further Topics to Explore on Coherent Trees

(1) Larson [L1999] and Larson and Todorčević [LT2001] relativized
Woodin’s Pmax theory to create maximal models in which there
exists a coherent Suslin tree.

(2) The forcing axioms MA(S) and PFA(S) have been widely studied
in recent years in both set theory and topology and is a topic of
contemporary interest. See Todorčević’s “Forcing with a coherent
Souslin tree” [TPFAS] for more information.

(3) See Chapter 4 of Todorčević’s book “Walks on Ordinals and Their
Characteristics” [T2007] and Todorčević’s article “Lipschitz Maps
on Trees” [T2007] for a detailed analysis of coherent Aronszajn
trees.

(4) Justin Moore made use of coherent Aronszajn trees in his proof of
the consistency of a five element basis for the class of
uncountable linear orders ([M2006]).

John Krueger (UNT) Tutorial on Suslin Trees YSTW 2022 100 / 210



Part 2: Suslin Trees Free Suslin Trees

Outline
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Maps Between Suslin Trees
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Rigidity and Homogeneity for Suslin Trees

The topics of rigidity and homogeneity take on additional meaning for
Suslin trees due to the fact that we often consider a Suslin tree as a
forcing notion.

Let T be a normal Suslin tree and let a and b be elements of T with
the same height. If Ta and Tb are isomorphic, then forcing a cofinal
branch above a also adds a cofinal branch above b. In other words,

a PT “Tb is not Aronszajn.”

In general, for any distinct elements a and b of T , we can ask, for
example, whether any of the following are satisfied:

1 a PT “Tb is Aronszajn.”
2 a PT “Tb is special.”
3 a PT “Tb is Suslin.”
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Products of Trees

These kinds of questions can be analyzed in terms of products of
trees.

Definition
For trees S and T , let S ⊗ T be the set of all pairs (a,b) such that for
some ordinal γ, a ∈ Sγ and b ∈ Tγ . Order S ⊗ T componentwise by
(a0,b0) <S⊗T (a1,b1) if a0 <S a1 and b0 <T b1.

This definition can be easily generalized from products of two trees to
products of finitely many trees.
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Products of Trees

Assume that S and T are normal ω1-trees. Then:
1 S ⊗ T is a normal ω1-tree;
2 S ⊗ T is a cofinal subset of the partial order S × T ordered

componentwise;
3 If one of S or T is Aronszajn, then so is S ⊗ T ;
4 If S ⊗ T has no uncountable antichain, then neither do S and T ,

but not necessarily conversely.
Similar statements hold for any finite product of trees.
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T ⊗ T Is Not Suslin

Theorem (Kurepa [K1950])
If T is a normal ω1-tree, then T ⊗ T is not Suslin.

Proof.
By recursion define a sequence of triples

〈(ai ,bi , ci) : i < ω1〉,

where for each i < ω1, bi and ci are distinct immediate successors of
ai , and for all i < j < ω1, htT (ai) + 1 < htT (aj). Then {(bi , ci) : i < ω1}
is an uncountable antichain of S ⊗ S.

It is possible, however, that certain subtrees of T ⊗ T are Suslin.
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Derived Trees

Definition
Let T be an ω1-tree. Let 1 ≤ n < ω. A derived tree of dimension n (or
an n-derived tree for short) is a tree of the form

Ta0 ⊗ · · · ⊗ Tan−1

where a0, . . . ,an−1 are distinct elements of T of the same height.

A derived tree of dimension 1 is just a tree of the form Ta where a ∈ T .

Note that T is Suslin iff every derived tree of dimension 1 is Suslin.
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Free Suslin Trees

Definition
Let 1 ≤ n < ω. A Suslin tree T is n-free if all of its n-derived trees are
Suslin.

Definition
A Suslin tree T is free if for all 1 ≤ n < ω, T is n-free.

It is easy to show that n + 1-free implies n-free.

In the literature, free trees go by several different names. They are also
called full trees or just Suslin trees whose derived trees are Suslin.
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The Existence of Free Suslin Trees

The forcings of Jech [J1967] and Tennenbaum [T1968] for adding a
Suslin tree both add free Suslin trees, although this is not stated in
their articles.

Theorem (Jensen; Devlin and Johnsbråten [DJ1974])
Assuming ♦, there exists a free Suslin tree.

This theorem is not stated explicitly in [DJ1974], but the rigid Suslin
tree constructed there is free. The definition of free was introduced by
Jensen in unpublished notes which came later.

Also, there is a free Suslin tree after forcing with Add(ω), as we will see
later.
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♦ Implies a Free Suslin Tree

Theorem (Jensen; Devlin and Johnsbråten [DJ1974])
Assuming ♦, there exists a free Suslin tree.

Proof (Sketch for the case of a 2-free Suslin tree).

Fix a diamond sequence 〈sα : α < ω1〉. Given any tree T with
underlying set ω1, we interpret each sα ⊆ α as coding:

1 a pair (a,b) of distinct elements of T � α of the same height;
2 an antichain Aα of (T � α)a ⊗ (T � α)b.

Given any pair (a,b) of distinct elements of T of the same height and
any maximal antichain A ⊆ Ta ⊗ Tb, there exists a club C ⊆ ω1 such
that for all δ ∈ C, A � δ is a maximal antichain of (T � δ)a ⊗ (T � δ)b.
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♦ Implies a Free Suslin Tree

The plan is to build a normal ω1-tree T by recursion which satisfies the
following property at any limit stage δ < ω1:

Suppose that sδ codes a maximal antichain Aδ of (T � δ)a ⊗ (T � δ)b.
Then for any pair of distinct elements c and d of Tδ such that a <T c
and b <T d , there is some member of Aδ below (c,d).

To see that this is enough, given any maximal antichain A of a
2-derived tree Ta ⊗ Tb, find some δ < ω1 such that:

1 A � δ is a maximal antichain of (T � δ)a ⊗ (T � δ)b, and
2 (a,b) and A � δ are coded by sδ.

Then by the above property, every member of Ta ⊗ Tb of height δ is
above some member of A � δ. Hence, A � δ = A so A is countable.
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♦ Implies a Free Suslin Tree

The base case and successor stages of the construction of T are
straightforward.

At any limit stage δ < ω1, we will choose cofinal branches 〈bn : n < ω〉
so that every member of T � δ belongs to some bn. Then we put a
unique upper bound on level δ above each such branch.

The difference between this construction and constructions of non-free
trees is that we will define all of the branches at the same time in ω
many steps, so that at any given stage, we have put only finitely many
elements into each bn.

Assume that sδ codes a pair (a,b) of distinct elements of T � δ of the
same height and a maximal antichain Aδ of (T � δ)a ⊗ (T � δ)b.
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♦ Implies a Free Suslin Tree

Enumerate T � δ as 〈xn : n < ω〉. Fix 〈δn : n < ω〉 cofinal in δ. Fix a
bijection f : ω → ω × ω.

At stage stage 0 of the construction, we put xn into bn for each n < ω.

Suppose n < ω and we have completed stages 0 through n. We now
describe stage n + 1. Let f (n) = (k ,m). At this stage we consider the
branches bk and bm. If k = m, then do nothing, so assume that k 6= m.

Let y and z be the last elements that have been added to bk and bm in
stages 0 through n of the construction.

First, choose y ′ and z ′ above y and z in T � δ with the same height,
where that height is at least δn. Put y ′ in bk and z ′ in bm.
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♦ Implies a Free Suslin Tree

If (y ′, z ′) is not in (T � δ)a⊗ (T � δ)b, then we are done with stage n + 1.

Suppose that (y ′, z ′) is in (T � δ)a ⊗ (T � δ)b. Using the fact that Aδ is a
maximal antichain of (T � δ)a ⊗ (T � δ)b, we can find some (y+, z+)
above (y ′, z ′) which is also above some member of Aδ. Now put y+ in
bk and z+ in bm.

This completes the construction. Now for each pair (c,d) of height δ
such that a <T c and b <T d , c and d are the unique upper bounds of
some branches bk and bm. Fix n such that f (n) = (k ,m). Then at
stage n + 1 we put something below (c,d) which is in Aδ as
required.
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When the Product of Suslin Trees Is a Suslin Tree

Theorem (Product Lemma)
Suppose that P and Q are c.c.c. forcing posets. Then the following are
equivalent:

1 P×Q is c.c.c.;
2 P “Q is c.c.c.”

Suppose that S and T are normal Suslin trees. Then PS and PT are
c.c.c. forcings.

Since S ⊗ T is a cofinal subset of S × T , PS⊗T is a dense subset of
PS × PT . So PS⊗T is c.c.c. iff PS × PT is c.c.c.
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When the Product of Suslin Trees Is a Suslin Tree

Theorem
Let S and T be normal Suslin trees. Then the following are equivalent:

1 S ⊗ T is a Suslin tree;
2 PS “T is Suslin”;
3 PT “S is Suslin”.

Proof.

S ⊗ T is Suslin ⇐⇒ PS⊗T is c.c.c. ⇐⇒ PS × PT is c.c.c.
⇐⇒ PS “PT is c.c.c.” ⇐⇒ PS “T is Suslin”.

This proves (1) iff (2). For (1) iff (3), S ⊗ T is Suslin iff T ⊗ S is Suslin
because these trees are isomorphic.
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Freeness in Terms of Forcing

In particular:

Theorem
Let T be a normal Suslin tree. Then the following are equivalent:

1 T is 2-free;
2 For any distinct elements a and b of T with the same height,

a PT “Tb is Suslin”.

In fact, if T is 2-free, then (2) is true for any incomparable a and b in T .

Similar results hold for n-free and free Suslin trees. For example, T is
3-free iff for any distinct elements a, b, and c of T with the same
height, a PT Tb ⊗ Tc is Suslin.
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2-Free Suslin Trees Are Totally Rigid

Corollary
Let T be a normal Suslin tree. If T is 2-free, then T is totally rigid.

Namely, for any distinct elements a and b of T with the same height,
Ta and Tb are not isomorphic, otherwise forcing with PT below a would
add a cofinal branch to Tb. In fact, being 2-free implies an even
stronger form of rigidity.

Proposition
Suppose that T is a normal Suslin tree, a and b are elements of T with
the same height, and there exists a strictly increasing function defined
on an uncountable subset of Ta mapping into Tb. Then T is not 2-free.

In particular, if T is a normal 2-free Suslin tree, then for any club
C ⊆ ω1, T � C is rigid.
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Rigid Suslin Algebras

Theorem
Let B be a Suslin algebra. Then the following are equivalent:

1 B is rigid (has no non-trivial automorphisms);
2 for every Suslinization T of B, for every club C ⊆ ω1, T � C is rigid.

Corollary
If T is a normal 2-free Suslin tree then BT is rigid.
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2-Free Trees Are Forcing Minimal

Theorem
Let T be a normal 2-free Suslin tree. Then PT is forcing minimal. That
is, if G is a generic filter on PT , then G is minimal over the ground
model in the sense that for any transitive model M of ZFC with

V ⊆ M ⊆ V [G],

either M = V or M = V [G].

For a very rough sketch of the proof, suppose that Ȧ is a PT -name for a
set of ordinals not in the ground model. Using 2-freeness, we can
prove that for unboundedly many levels δ < ω1, any two elements x
and y of Tδ disagree about whether or not some ordinal is in Ȧ. Thus,
for any generic branch G, if we know ȦG, we can recover G. (We will
see more details of similar arguments later.)
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Simple Boolean Algebras

Definition
An atomless complete Boolean algebra is simple if it has no atomless
complete subalgebras other than itself and the trivial subalgebra.

Theorem (McAloon (1971))
Any atomless complete Boolean algebra is simple iff it is rigid and
forcing minimal.

Corollary
Suppose T is a normal 2-free Suslin tree. Then BT is simple.
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Entangled Sets of Reals

We will give another characterization of freeness similar to entangled
sets of reals.

Definition (Abraham and Shelah [AS1981])
Let 1 ≤ n < ω. An uncountable set of reals X ⊆ R is n-entangled if
whenever

{(aβ,0, . . . ,aβ,n−1) : β < ω1}

is a family of pairwise disjoint injective n-tuples from X and h : n→ 2 is
a function, then there exist β < γ < ω1 such that for all i < n,

aβ,i < aγ,i ⇐⇒ h(i) = 1.

A set of reals X is entangled if it is n-entangled for all 1 ≤ n < ω.
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Entangled Sets of Reals and Rigidity

Theorem (Abraham and Shelah [AS1981])
CH implies the existence of an entangled set of reals. MAω1 implies
that every uncountable set of reals is not n-entangled for some n.

Entangledness for sets of reals is a form of rigidity. For example, if X is
2-entanged, then for any disjoint uncountable sets A,B ⊆ X , A and B
are not isomorphic.

In particular, if there exists a 2-entangled set of reals, then not all
ω1-dense sets of reals are isomorphic (that is, Baumgartner’s axiom
fails).
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Freeness and Entangledness

Freeness for Suslin trees is equivalent to a property similar to
entangledness for sets of reals.

Theorem (K. (2020))
Let T be a Suslin tree and 1 ≤ n < ω. Then T is n-free iff for any
n-derived tree U = Tc0 ⊗ · · · ⊗ Tcn−1 , whenever

{(aβ,0, . . . ,aβ,n−1) : β < ω1}

is a family of disjoint members of U and h : n→ 2 is a function, then
there exist β < γ < ω1 such that for all i < n,

aβ,i <T aγ,i ⇐⇒ h(i) = 1.
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Part 2: Suslin Trees Free Suslin Trees

Strongly Homogeneous and Free Trees

Free Suslin trees and strongly homogeneous Suslin trees are on
opposite sides of the spectrum with regards to homogeneity and
rigidity. So the following result is surprising.

Theorem (Larson [L1999])
Suppose that there exists a strongly homogeneous Suslin tree T .
Then there exists a free Suslin tree S, a club C ⊆ ω1, and a strictly
increasing surjection f : T � C → S � C.

So if there exists a uniform coherent Suslin tree, then there exists a
free Suslin tree. (We will see later that the converse of this statement
is false in general.) In particular, Cohen forcing Add(ω) adds a free
Suslin tree.
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Part 2: Suslin Trees Free Suslin Trees

Strongly Homogeneous and Free Trees

Larson’s proof was generalized by Gido Scharfenberger-Fabian (using
his concept of optimal matrices of partitions) as follows.

Theorem (G. Sharfenberger-Fabian [SF2010])

Suppose that T is a strongly homogeneous Suslin tree. Let 2 ≤ n < ω.
Then there exist free Suslin trees S0, . . . ,Sn−1 such that

T ∼= S0 ⊗ · · · ⊗ Sn−1.
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Part 2: Suslin Trees Free Suslin Trees

n-Free Does Not Imply n + 1-Free

Scharfenberger-Fabian proved that the property n-free does not imply
n + 1-free for any 1 ≤ n < ω, which answered a problem of Fuchs and
Hamkins [FH2009].

Theorem (G. Sharfenberger-Fabian [SF2010])

Suppose that there exists a strongly homogeneous Suslin tree. Then
for every 1 ≤ n < ω, there exists an n-free Suslin tree which is not
n + 1-free.

Theorem (K. [K2022])
Suppose that T is a normal free Suslin tree. Then for every 1 ≤ n < ω,
there exists a c.c.c. forcing poset which forces that T is n-free but
every n + 1-derived tree is special.
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Part 2: Suslin Trees Free Suslin Trees

Self-Specializing Suslin Trees

The main types of Suslin trees we have considered so far are strongly
homogeneous and free trees. Let us consider a third type of tree.

Definition

A Suslin tree T is self-specializing if PT forces that T \ Ġ is special.

According to Shelah and Zapletal [SZ1999] (stated without proof), a
self-specializing Suslin tree exists assuming ♦ and after forcing ω1
many Cohen reals.

Self-specializing trees are defined in terms of forcing, but there is a
natural combinatorial property which implies self-specializing.
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Part 2: Suslin Trees Free Suslin Trees

The Property That All 2-Derived Trees Are Special

Lemma
Suppose that T is a normal Suslin tree. If every 2-derived tree of T is
special, then T is self-specializing.

Proof.
For every pair a and b of distinct elements of T with the same height,
fix a specializing function fa,b : Ta ⊗ Tb → ω. Let G be a generic filter
on PT . Define f : T \G→ ω as follows. For any a ∈ T \G, let βa be the
least ordinal such that a � βa /∈ G. Define
f (a) = fG(βa),a�βa(G(htT (a)),a). If a <T b are in T \G, then βa = βb and
a � βa = b � βb. So

f (a) = fG(βa),a�βa(G(htT (a)),a) 6= fG(βb),b�βb
(G(htT (b)),b).
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Part 2: Suslin Trees Free Suslin Trees

Self-Specializing Suslin Trees

In particular, if T is 2-free, then there exists a c.c.c. forcing extension in
which T is a self-specializing Suslin tree.

For a partial converse to the lemma, if T is a Suslin tree which forces
that there exists a strictly increasing and continuous map of T \ Ġ into
Q, then every 2-derived tree of T is special.

In general, if T is a self-specializing Suslin tree, then every 2-derived
tree is R-embeddable.
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Part 2: Suslin Trees Free Suslin Trees

Self-Specializing Suslin Trees

Lemma
Self-specializing Suslin trees are totally rigid and not 2-free.

Proof.

Suppose that PT forces that T \ Ġ is special. Then PT forces that T \ Ġ
does not have a cofinal branch. This implies that T is totally rigid.

If a and b are distinct elements of T of the same height, then a forces
in PT that Tb ⊆ T \ Ġ, and hence that Tb is special. So a forces in PT
that Tb is not Suslin. Therefore, Ta ⊗ Tb is not Suslin.
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Part 2: Suslin Trees Free Suslin Trees

The Unique Branch Property

Definition
A normal Suslin tree T has the unique branch property (or UBP) if
forcing with T produces exactly one cofinal branch, in other words,

PT “T \ Ġ is Aronszajn.”

Clearly, 2-free Suslin trees and self-specializing Suslin trees have the
unique branch property. The unique branch property is a form of
rigidity.

For any property P of a tree, we call a Suslin tree T absolutely P if T
satisfies P and PT forces that T \ Ġ has property P.
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Part 2: Suslin Trees Free Suslin Trees

Separating Degrees of Rigidity

Theorem (Fuchs and Hamkins [FH2009])
The following implication diagram is complete, in the sense that no
other implications are provable in ZFC other than the ones explicitly
displayed in the diagram. Counterexamples to the missing implications
all exist assuming ♦.
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Part 3: Models of ¬SH With Few Suslin Trees

Outline

1 Part 1: Suslin’s Hypothesis and Aronszajn Trees
A Brief History of the Suslin Problem
A Survey of Aronszajn Trees
Homogeneous and Rigid Aronszajn Trees

2 Part 2: Suslin Trees
Suslin Trees as Forcing Notions
Coherent Suslin Trees
Free Suslin Trees

3 Part 3: Models of ¬SH With Few Suslin Trees
Maps Between Suslin Trees
Consistency Results
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Outline
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Goal

The goal for the remainder of the talks is to construct models of ZFC
by forcing satisfying statements of the form:

1 There exist Suslin trees, but not many different ones, and
2 Every nowhere Suslin tree is special, or there are not many

different nowhere Suslin trees.

“Different” here refers to not being club isomorphic. For example, in
these models the number of club-isomorphism-types of different kinds
of trees is small or can be described precisely.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Goal

The first theorem of this type was proven by Abraham and Shelah
[AS1985] using Jensen’s method of producing a model of CH + ¬SH.

Theorem (Abraham and Shelah [AS1985])
Assume V = L (or just ♦∗, �ω1 , and GCH). Then there exists a forcing
extension satisfying:

1 GCH;
2 there exists a free Suslin tree R and a special Aronszajn tree U;
3 for every normal Suslin tree S, there exists a derived tree of R

which club embeds into S;
4 every normal nowhere Suslin Aronszajn tree club embeds into U,

and hence is special.

We will give a complete proof of an easier variation of this theorem.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Strictly Increasing and Level Preserving Maps

Definition
Let S and T be trees and f : S → T .

1 f is strictly increasing if x <S y implies f (x) <T f (y) for all x and y
in S;

2 f is level preserving if htT (f (x)) = htS(x) for all x ∈ S.

If f : S → T is strictly increasing, we can define a level preserving map
f ∗ : S → T by

f ∗(x) := f (x) � htS(x).

This definition makes sense because f being strictly increasing implies
that htT (f (x)) ≥ htS(x). It is easy to check that f ∗ is strictly increasing.
So oftentimes without loss of generality we can assume that the strictly
increasing maps we are working with are level preserving.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Suslin Subtrees

Lemma
Let S be a Suslin tree, T an Aronszajn tree, and suppose that there
exists a strictly increasing map f : S → T . Then T contains a Suslin
subtree (in other words, T is not nowhere Suslin).

Proof.
Let U := f [S] be the range of f . Then U is an uncountable subtree of
T . Note that U cannot have an uncountable branch because T is
Aronszajn.

If A ⊆ U is an antichain of U, then the fact that f is strictly increasing
implies that f−1(A) is an antichain of S. Since S is Suslin, f−1(A) is
countable, so A is countable.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Embeddings

Another type of map between trees is an embedding, which is an
isomorphism between one tree and a subtree of another.

Definition
Let S and T be trees. A function f : S → T is an embedding if f is
injective and for all x and y in S,

x <S y ⇐⇒ f (x) <T f (y).

Conflict in terminology: We previously talked about Q-embeddable and
R-embeddable trees. In our current terminology, those words indicate
strictly increasing maps into Q and R, not embeddings.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Strictly Increasing Maps Versus Embeddings

In general, strictly increasing maps are not necessarily embeddings.

For example, if T is a strongly homogeneous Suslin tree, then there
exists a surjective strictly increasing map of T onto a free Suslin tree.
But a strongly homogeneous Suslin tree cannot be isomorphic to a
free tree.

The issue distinguishing strictly increasing maps from embeddings is
injectivity.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Strictly Increasing Maps Versus Embeddings

Lemma
Suppose that S and T are normal ω1-trees and f : S → T is strictly
increasing. Then f is an embedding iff f is injective.

Proof.
(⇒) Immediate.
(⇐) We need to show that for all x and y in S, if f (x) <T f (y) then
x <S y . Suppose that f (x) <T f (y) but x 6<S y . Let x ′ := y � htS(x).
Then x ′ 6= x .

Now f (x ′) <T f (y) since f is strictly increasing. Since f is injective,
f (x ′) 6= f (x). But then f (x ′) and f (x) are both below f (y), and hence
they are equal because T is a tree, which is a contradiction.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Club Embeddings

Definition
Let S and T be normal ω1-trees. A club embedding of S into T is an
embedding of the form f : S � C → T for some club C ⊆ ω1. If there
exists such a function, then S club embeds into T .

The following is easy to check.

Lemma
Let S and T be normal ω1-trees. If S club embeds into T , then there
exists a club D ⊆ ω1 and a club embedding g : S � D → T � D which is
level preserving.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Strictly Increasing Maps and Adding a Cofinal Branch

Proposition (Essentially Abraham and Shelah [AS1985])
Let S be a normal Suslin tree and T a normal Aronszajn tree. Then
the following are equivalent:

1 PS “T has a cofinal branch”;
2 there exists a club C ⊆ ω1 and a strictly increasing and level

preserving map f : S � C → T � C;
3 there exists an unbounded set X ⊆ ω1 and a strictly increasing

map g : S � X → T .

Proof.
(2 implies 3) and (3 implies 1) are easy.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Strictly Increasing Maps and Adding a Cofinal Branch

(1 implies 2) Suppose that S forces that ḃ is a cofinal branch of T .
Note that if x ∈ S decides ḃ(α), then x decides ḃ(β) for all β < α.

We claim that if δ < ω1 is a limit ordinal and x ∈ S decides ḃ � δ, then x
decides ḃ(δ). Otherwise there are distinct y and z in S above x in S
and distinct elements c and d in Tδ such that y PS “ḃ(δ) = c” and
z PS “ḃ(δ) = d .”.

But then c and d have the same set of predecessors in T , namely the
set

{z ∈ T : ∃γ < δ x PS “ḃ(γ) = z”}.

This contradicts that T has unique limits since it is normal.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Strictly Increasing Maps and Adding a Cofinal Branch

For each α < ω1, let Dα be the dense open set of x ∈ S such that x
decides ḃ(α). By the previous claim, if δ < ω1 is a limit ordinal and
x ∈

⋂
{Dα : α < δ}, then x ∈ Dδ.

Since S is a Suslin tree, for each α < ω1 we can fix γα < ω1 such that

S � [γα, ω) ⊆ Dα.

So every member of S with height at least γα decides ḃ(β) for all
β ≤ α.

Let C be the club of limit ordinals δ < ω1 such that for all α < δ, γα < δ.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Strictly Increasing Maps and Adding a Cofinal Branch

Consider δ ∈ C and x ∈ S � C. For all α < δ, γα < δ, so x ∈ Dα. So
x ∈

⋂
{Dα : α < δ}, and therefore x ∈ Dδ.

Define f : S � C → T � C as follows. Let δ ∈ C and x ∈ Tδ. Define
f (x) := c where c is the unique element of Tδ such that
x PS “ḃ(δ) = c.”

If x <S y in T � C, then y forces that f (x) and f (y) are both in ḃ, and
hence that f (x) <T f (y). So f is strictly increasing and level preserving.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Strictly Increasing Maps

Lemma
Let S and T be normal ω1-trees, where T is Aronszajn, and suppose
that f : S → T strictly increasing and level preserving. Then for all
distinct elements x and y of S with the same height, there exist x ′ and
y ′ in S with the same height such that x <S x ′, y <S y ′ and
f (x ′) 6= f (y ′).

Proof.
Suppose for a contradiction that x and y in S are a counterexample.
Note that for all x0 and x1 in S above x of the same height,
f (x0) = f (x1). Namely, by the normality of S fix y0 above y of the same
height as x0 and x1. Then by the choice of x and y ,
f (x0) = f (y0) = f (x1).
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Strictly Increasing Maps

Let ξ be the height of x and y . For all β < ω1 above ξ, let zβ be the
unique value of f (x0) for any x0 >S x with height β. This is possible
since S is normal.

We claim that {zβ : ξ < β < ω1} is a chain, which contradicts that T is
Aronszajn.

Consider β < γ < ω1 above ξ. By the normality of S, we can fix
xβ ∈ Sβ above x and xγ ∈ Sγ above xβ. Since f is strictly increasing,
zβ = f (xβ) <T f (xγ) = zγ .
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Going From Strictly Increasing Maps to Embeddings

Lemma
Let S be a normal Suslin tree and let T be a normal Aronszajn tree.
Suppose that f : S → T is strictly increasing and level preserving. If
there exists an unbounded set A ⊆ ω1 such that f is injective on S � A,
then there exists a club C ⊆ ω1 such that f : S � C → T � C is a level
preserving embedding.

Proof.
Let C := A ∪ lim(A). It suffices to show that for all δ ∈ lim(A), f is
injective on Sδ. Consider distinct x and y in Sδ. Since S is normal and
δ is a limit point of A, fix β ∈ A∩ δ such that x � β and y � β are distinct.
Then f (x � β) 6= f (y � β), which implies that f (x) 6= f (y).
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Strictly Increasing Maps on 2-Free Trees Are
Embeddings

Theorem (Abraham and Shelah [AS1985])
Suppose that S is a normal 2-free Suslin tree and T is a normal
Aronszajn tree. Assume that f : S → T is strictly increasing and level
preserving. Then there exists a club C ⊆ ω1 such that
f : S � C → T � C is an embedding. So S club embeds into T .

Contrast this with the situation of a strongly homogeneous tree which
has a strictly increasing map onto a free tree, but does not club embed
into the free tree.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Strictly Increasing Maps on 2-Free Trees Are
Embeddings

Proof.

Let f : S → T be strictly increasing and level preserving. By the
previous lemma, it suffices to show that there are unboundedly many
δ < ω1 such that f is injective on Sδ.

Suppose for a contradiction that there exists some ξ < ω1 such that for
all α with ξ < α < ω1, f is not injective on Sα. For each such α, choose
distinct elements xα and yα of Sα such that f (xα) = f (yα).
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Strictly Increasing Maps on 2-Free Trees Are
Embeddings

By the pressing down lemma, fix a stationary set X ⊆ ω1 of ordinals
greater than ξ and distinct elements x and y of Sξ such that for all
α ∈ X , xα � ξ = x and yα � ξ = y .

Let D be the set of (c,d) in Sx ⊗ Sy such that f (c) 6= f (d). By a
previous lemma, D is dense open in Sx ⊗ Sy .

Since S is 2-free, Sx ⊗ Sy is Suslin. So we can find some δ < ω1 such
that every member of Sx ⊗ Sy with height at least δ is in D. Now
choose some α ∈ X with α ≥ δ. Then (xα, yα) ∈ D, so f (xα) 6= f (yα),
contradicting the choice of xα and yα.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

Strictly Increasing Maps on 2-Free Trees Are
Embeddings

Corollary
Let S be a normal 2-free Suslin tree and let T be a normal Aronszajn
tree. Suppose that

PS “T has a cofinal branch.”

Then S club embeds into T .

Proof.
By a previous lemma, there exists a club C ⊆ ω1 and a strictly
increasing and level preserving map f : S � C → T � C. Now apply the
previous theorem to f , S � C, and T � C.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

A Generalization to Derived Trees

A similar but more elaborate argument proves the following theorem.

Theorem (Abraham and Shelah [AS1985])
Let S be a normal Suslin tree and let T be a normal Aronszajn tree.
Suppose that for some derived tree S∗ of S, there is a strictly
increasing map from S∗ into T , and moreover, S∗ has the smallest
dimension of any such derived tree.

Let n be the dimension of S∗. Assume that S is 2n-free.

Then for any strictly increasing and level preserving map f : S∗ → T ,
there exists a club C ⊆ ω1 such that f : S∗ � C → T � C is a level
preserving embedding.
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Part 3: Models of ¬SH With Few Suslin Trees Maps Between Suslin Trees

A Generalization to Derived Trees

Corollary
Let S be normal Suslin tree and let T be a normal Aronszajn tree.
Suppose that n > 0, S∗ is an n-derived tree of S,

PS∗ “T has a cofinal branch,”

and moreover, n is the least positive integer for which there exists such
a derived tree. Assume that S is 2n-free. Then S∗ club embeds into T .
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Outline

1 Part 1: Suslin’s Hypothesis and Aronszajn Trees
A Brief History of the Suslin Problem
A Survey of Aronszajn Trees
Homogeneous and Rigid Aronszajn Trees

2 Part 2: Suslin Trees
Suslin Trees as Forcing Notions
Coherent Suslin Trees
Free Suslin Trees

3 Part 3: Models of ¬SH With Few Suslin Trees
Maps Between Suslin Trees
Consistency Results

John Krueger (UNT) Tutorial on Suslin Trees YSTW 2022 156 / 210



Part 3: Models of ¬SH With Few Suslin Trees Consistency Results

R and DR

For the remainder of the talks, R will denote a normal free Suslin tree
and DR will denote the collection of all derived trees of R.

Going forward we will adopt the abbreviation of writing T for the forcing
poset PT . For example, we will talk about dense open subsets of T
instead of PT , and write T instead of PT .
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R and DR

Lemma
DR is closed under the operation which maps T ∈ DR and x ∈ T to Tx .

Proof.
If T ∈ DR then for some n > 0 and distinct a0, . . . ,an−1 of R of the
same height,

T = Ra0 ⊗ · · · ⊗ Ran−1 .

Consider x ∈ T . Then x = (b0, . . . ,bn−1) for some b0, . . . ,bn in R of
the same height such that a0 ≤R b0, . . . ,an−1 ≤R bn−1. Then

Tx = T(b0,...,bn) = Rb0 ⊗ · · · ⊗ Rbn−1 ∈ DR.
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Part 3: Models of ¬SH With Few Suslin Trees Consistency Results

R and DR

Corollary
Let T ∈ DR and let U be a normal Aronszajn tree. Suppose that x ∈ T
and

x T “U is not Aronszajn.”

Then there exists some T ∗ ∈ DR such that

T∗ “U has a cofinal branch.”

Proof.
If x T “U has a cofinal branch” then Tx “U has a cofinal branch.” But
Tx ∈ DR.
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Part 3: Models of ¬SH With Few Suslin Trees Consistency Results

Disjoint Unions of Suslin Trees

Suppose that 〈Tn : n < ω〉 is a sequence of normal Suslin trees. Then
we can form a tree by taking a disjoint union⊔

n

Tn,

which is essentially the tree consisting of the Tn’s placed side-by-side.

Formally, this tree has underlying set equal to
⋃

n{n} × Tn together
with a root 0, and ordered by (k , x) <⊔

n Tn (m, y) if k = m and x <Tm y .

It is easy to prove that
⊔

n Tn is also a normal Suslin tree.
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Part 3: Models of ¬SH With Few Suslin Trees Consistency Results

Disjoint Unions of Derived Trees

In any model in which R is a normal free Suslin tree, the following trees
will also be normal Suslin trees:

1 R;
2 Every tree in DR;
3 Every countable disjoint union of trees in DR.

Note that there are trees as described in (3) which are not club
isomorphic to trees in DR. For example, if we choose Tn to be an
n-derived tree of R for each 1 ≤ n < ω, then

⊔
n Tn is not itself club

isomorphic to a derived tree of R.

In fact, if X and Y are distinct infinite subsets of ω, then
⊔

n∈X Tn and⊔
n∈Y Tn are not club isomorphic. So there are 2ω many distinct

club-isomorphism-types of normal Suslin trees.
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Does There Have to Be a Free Suslin Tree?

We will prove that it is consistent that every normal Suslin tree is club
isomorphic to either a derived tree of R or a countable disjoint union of
derived trees of R.

This is the minimum collection of club-isomorphism-types of normal
Suslin trees in the presence of a free Suslin tree.

Question (Shelah and Zapletal [SZ1999])
Is it consistent that there exists a Suslin tree, but there does not exist a
free Suslin tree?
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Specializing an Aronszajn Tree

Definition
Let T be a tree of height ω1. Define Q(T ) to be the forcing poset
whose conditions are finite functions p : dom(p) ⊆ T → ω such that
x <T y in dom(p) implies p(x) 6= p(y), ordered by reverse inclusion.

Theorem (Baumgartner [B1970])

Let T be a tree of height ω1. Then T has no cofinal branch iff Q(T ) is
c.c.c. In that case, Q(T ) forces that T is special.

Note that since Q(T ) is defined by finite conditions, it is absolute
between inner models of ZFC with the same ω1.
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Preserving a Suslin Tree

Theorem
Let S be a normal Suslin tree and U a tree of height ω1 with no cofinal
branch. Then

S “U has no cofinal branch” ⇐⇒ Q(U) “S is Suslin.”

Proof.
By the product lemma,

Q(U) “S is Suslin” ⇐⇒ Q(U) “S is c.c.c.” ⇐⇒
Q(U)× S is c.c.c. ⇐⇒ S ×Q(U) is c.c.c. ⇐⇒

S “Q(U)V is c.c.c.” ⇐⇒ S “Q(U)V S
is c.c.c.”

⇐⇒ S “U has no cofinal branch.”
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Preserving a Suslin Tree

Corollary
Let U be a normal Aronszajn tree, and suppose that for every T ∈ DR,

T “U is Aronszajn.”

Then
Q(U) “R is a free Suslin tree.”

The same result is true if we replace Q(U) with Shelah’s proper forcing
poset for specializing U without adding reals. But the argument is
much more complex.
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Finite Support Forcing Iterations Preserve Suslin Trees

Theorem
Let T be a Suslin tree. Then the property of a forcing poset that it is
c.c.c. and forces that T is Suslin is preserved by any finite support
forcing iteration.

Proof.
We will prove the theorem by induction on the length of the iteration.
The successor case is immediate. So let δ be a limit ordinal and
consider a finite support forcing iteration

〈Pβ, Q̇γ : β ≤ δ, γ < δ〉

of c.c.c. forcings, where we assume that for all β < δ, Pβ forces that T
is Suslin. We will prove that Pδ forces that T is Suslin.
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Finite Support Forcing Iterations Preserve Suslin Trees

Suppose for a contradiction that q ∈ Pδ and

q δ “Ȧ = {ẋi : i < ω1} is an uncountable antichain of T .”

For each i < ω1, fix qi ≤δ q and xi ∈ T such that qi δ “ẋi = xi .” Note
that if i < j < ω1 and qi and qj are compatible in Pδ, then xi and xj are
incomparable in T .

Applying the ∆-system lemma to the domains of the qi ’s, fix an
uncountable set X ⊆ ω1, an ordinal β < δ, and a finite set r ⊆ β such
that for all i < j in X , dom(qi) ∩ dom(qj) = r .

Note that for all i < j in X , qi and qj are compatible in Pδ iff qi � β and
qj � β are compatible in Pβ.
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Finite Support Forcing Iterations Preserve Suslin Trees

Since Pβ is c.c.c., by a standard argument we can find r ≤β q � β such
that

r β “Ż := {i < ω1 : qi � β ∈ Ġβ} is uncountable.”

Let H be a generic filter on Pβ with r ∈ H. Let Z := Ż H .

Working in V [H], consider i < j in Z . Then qi � β and qj � β are in H
and so are compatible in Pβ. Therefore, qi and qj are compatible in Pδ.
Hence, xi and xj are incomparable in T .

If follows that {xi : i ∈ Z} is an uncountable antichain of T in V [H],
which contradicts the inductive hypothesis which implies that Pβ forces
that T is Susin.
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A Consistency Result on Few Suslin Trees

Theorem
Assume that R is a normal free Suslin tree and GCH holds. Then there
exists a c.c.c. forcing poset which forces:

1 2ω = 2ω1 = ω2;
2 R is a free Suslin tree;
3 for every normal Suslin tree S, there exists a derived tree of R

which club embeds into S;
4 for every normal Aronszajn tree U, if U does not contain a Suslin

subtree, then U is special.
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A Consistency Result on Few Suslin Trees

Proof.
We define by recursion a finite support forcing iteration

〈Pα, Q̇β : α ≤ ω2, β < ω2〉

of c.c.c. forcings. Our inductive hypothesis is that each Pα forces that
R is a free Suslin tree.

At stage α < ω2, we consider a Pα-name U̇α for a normal Aronszajn
tree satisfying that for every derived tree T of R,

Pα∗T “U̇α is Aronszajn.”

Let Q̇α := Q(U̇α). Then in VPα , for every derived tree T of R, Q̇α forces
that T is Suslin, and hence Q̇(α) forces that R is a free Suslin tree.
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A Consistency Result on Few Suslin Trees

By standard bookkeeping we can arrange that every normal Aronszajn
tree in VPω2 is considered at some stage α < ω2.

Let G be a generic filter on Pω2 . Then in V [G], R is a free Suslin tree
and 2ω = 2ω1 = ω2.

Consider a normal Aronszajn tree U in V [G]. Then there are two
possibilities.

Case 1: For every derived tree T of R, T “U is Aronszajn.”

By downwards absoluteness, the above statement is also true in any
intermediate model, and in particular, in the model V [Gα] such that
U = U̇Gα

α . Then Qα = Q(U), so U is special in V [G].
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Consistency Result

Case 2: For some derived tree T of R and for some x ∈ T ,

x T “U has a cofinal branch.”

But then Tx is a derived tree of R as well, and Tx forces that U has a
cofinal branch.

Taking a derived tree S of R of smallest dimension which forces that U
has a cofinal branch, by a previous result S club embeds into U.
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Subtrees of Suslin Trees

Let us discuss in more detail the properties satisfied in the above
model. We will need a lemma about subtrees of Suslin trees.

Lemma
Suppose that T is a Suslin tree. Let X ⊆ T be uncountable. Then
there exists some x ∈ T such that X is dense below x in T .

Proof.
If not, then for all x ∈ T there exists y >T x such that there is nothing
in X above y . Let D be the set of such y . Then D is dense open in T .

Since T is Suslin, we can fix δ < ω1 such that Tδ ⊆ D. Then every
member of Tδ has nothing above it in X . It follows that X ⊆ T � δ,
which contradicts that X is uncountable.

John Krueger (UNT) Tutorial on Suslin Trees YSTW 2022 173 / 210



Part 3: Models of ¬SH With Few Suslin Trees Consistency Results

Few Suslin Trees

Proposition
Suppose that:

1 R is a normal free Suslin tree;
2 for every normal Suslin tree S, there exists some derived tree of R

which club embeds into S.
Then every Suslin tree is club isomorphic to a countable disjoint union
of derived trees of R.

Under the above assumptions, there are ω1 many derived trees of R,
and hence ωω1 = 2ω many countable disjoint unions of such trees. As
we saw previously, there are 2ω many non-club-isomorphic such trees.
So there are exactly 2ω many club-isomorphism-types of normal Suslin
trees. This is the minimal number under the assumption of a free
Suslin tree.

John Krueger (UNT) Tutorial on Suslin Trees YSTW 2022 174 / 210



Part 3: Models of ¬SH With Few Suslin Trees Consistency Results

Few Suslin Trees

Proof.
Let S be a normal Suslin tree. The following is easy to check.

Claim.
Suppose that x ∈ S and f : T � C → Sx � C is a club isomorphism for
some derived tree T of R. Then for any δ ∈ C and y ∈ Sx � C, there is
a club isomorphism between some derived tree of R and Sy .

Define D as the set of y ∈ S such that there exists a derived tree T of
R and a club isomorphism f : T � Cy → Sy � Cy .

Let us show that it suffices to prove that D is dense. Then the upward
closure E of D is dense open. So there exists some β < ω1 such that
Sβ ⊆ E .
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Few Suslin Trees

Fix δ ∈
⋂
{Cy : y ∈ D ∩ (S � (β + 1))}. By the claim, for all z ∈ Sδ there

exists a club isomorphism

fz : T (z) � Cz → Sz � Cz

for some derived tree T (z) of R and club Cz with δ ∈ Cz .

Let C :=
⋂
{Cz : z ∈ Sδ}. Let f :=

⋃
{fz � (T (z) � C) : z ∈ Sδ}. Then

f :
⊔
{T (z) : z ∈ Sδ} � C → S � C

is a club isomorphism.
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Few Suslin Trees

To show that D is dense, consider x ∈ S. Then Sx is Suslin. By
assumption there exists a derived tree T of R and a club embedding
f : T � C → Sx � C.

The range of f is an uncountable subset of Sx , so by the lemma we
can find y >S x such that the range of f is dense below y . Without loss
of generality, htS(y) ∈ C.

It easily follows that the range of f contains Sy � C. So f gives a club
isomorphism between the derived tree Tf−1(y) of R and Sy .
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Few Suslin Trees With CH

Theorem (Abraham and Shelah [AS1985])
Assume GCH, ♦∗, and �ω1 . Then there exists a forcing poset which
forces:

1 GCH;
2 there exists a normal free Suslin tree R and a special Aronszajn

tree U;
3 for any Aronszajn tree T , either some derived tree of R club

embeds into T , or else T club embeds into U (and hence is
special).

This theorem was proven using Jensen’s technique for forcing a model
of SH + CH. Starting with a free Suslin tree R, a sequence of Suslin
trees 〈T ν : ν < ω2〉 is defined so that forcing with T ν+1 adds a cofinal
branch to T ν and specializes an Aronszajn tree A in V Tν which
remains Aronszajn after forcing with any derived tree of R.
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Another Model With Few Suslin Trees and CH

Note that in a model of CH and few Suslin trees, there are 2ω = ω1
many club-isomorphism-types of normal Suslin trees.

A different proof with few Suslin trees and CH was given later by
Abraham and Shelah [AS1993] using the method of proper forcing,
iterations of proper forcings without add reals, and the following
preservation theorem:

Theorem (Abraham and Shelah [AS1993]; Miyamoto [M1993])
Let S be a Suslin tree. Then the property of a forcing poset being
proper and preserving the fact that S is Suslin is preserved by any
countable support forcing iteration.
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Using Suslin Trees to Solve a Problem of Woodin

Theorem (Woodin)
Assume that there exists a measurable Woodin cardinal. Then every
Σ2

1 set of reals is determined. Hence, there cannot exists a Σ2
1

well-ordering of the reals.

Woodin asked whether this theorem could be improved by replacing
Σ2

1 by Σ2
2.

Abraham and Shelah [AS1993] used their method of constructing
models with few Suslin trees (in an indirect way) to prove a negative
answer.
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Using Suslin Trees to Solve a Problem of Woodin

Rather than using a single free Suslin tree as in our previous
examples, Abraham and Shelah [AS1993] made use of a sequence
〈Ri : i < ω1〉 of free Suslin trees.

Every subset of ω1 determines a pattern, and it is possible to obtain a
model in which each Ri is a free Suslin tree, and the pattern
determines which finite products of the Ri ’s are free and which finite
products are special. All normal Aronszajn trees are either special or
contain a club isomorphic copy of some derived tree of some Ri .

Under CH, if the subset of ω1 under consideration codes a
well-ordering of the reals, then the pattern of the free trees as just
described determines a ∆2

2-well ordering of the reals.
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Few Suslin Trees and a Unique Nowhere Suslin
Aronszajn Tree

Theorem (K. 2022)
The following is consistent:

1 There exists a normal free Suslin tree R;
2 For every normal Suslin tree, there exists a derived tree of R

which club embeds into it;
3 Any two normal Aronszajn trees, neither of which contains a

Suslin subtree, are club isomorphic.

In contrast to the preceding models, the above statement is not
consistent with CH. Namely, CH implies the existence of 2ω1 many
pairwise non-club-isomorphic special Aronszajn trees.
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Forcing Two Aronszajn Trees to Be Club Isomorphic

Definition (Abraham and Shelah [AS1985])
Let T and U be normal Aronszajn trees. Define the forcing poset
Q(T ,U) to consist of all pairs (x , f ) satisfying:

1 x is a finite set of countable limit ordinals;
2 f is an injective function whose domain is a finite downwards

closed subset of T � x mapping into U;
3 f is strictly increasing and level preserving.

The ordering of Q(T ,U) is defined by (y ,g) ≤ (x , f ) if x ⊆ y and f ⊆ g.
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Compatibility Lemma

Lemma (Compatibility Lemma)
Suppose that T and U are normal Aronszajn trees. Let Y ⊆ ω1 be a
stationary set of limit ordinals. Assume that

{(xα, fα) : α ∈ Y}

is a set of conditions in Q(T ,U) such that

∀α ∈ Y α ∈ xα.

Then there exist α < β in Y such that (xα, fα) and (xβ, fβ) are
compatible.
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Q(T ,U) Is Proper

Theorem
Q(T ,U) is proper.

Proof.
Fix a large enough regular cardinal θ and let N be a countable
elementary substructure of H(θ) containing Q(T ,U). Let
(x , f ) ∈ N ∩Q(T ,U). We claim that

qN := (x ∪ {N ∩ ω1}, f )

is (N,Q(T ,U))-generic. Let D ∈ N be a dense open subset of
Q(T ,U). Consider a condition (y ,g) ≤ qN , and we will show that (y ,g)
is compatible with some member of N ∩ D. Assume for a contradiction
that it is not. Without loss of generality, assume that (y ,g) ∈ D.
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Q(T ,U) Is Proper

Working in N, we define by recursion a set Y ⊆ ω1 and a sequence

〈(xα, fα) : α ∈ Y 〉

satisfying:
1 for all α ∈ Y , α ∈ xα;
2 for all α ∈ Y , (xα, fα) ∈ D;
3 for all α < β in Y , (xα, fα) and (xβ, fβ) are incompatible;
4 Y is stationary.

This will contradict the compatibility lemma.
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Q(T ,U) Is Proper

If the recursion stops before ω1 many steps, then by elementarity it
would stop at some ordinal in N ∩ ω1. So we would have some
γ ∈ N ∩ ω1 where Y ⊆ γ, the sequence

〈(xα, fα) : α ∈ Y 〉

is in N, but it is not possible to add anything further. But

(xN∩ω1 , fN∩ω1) := (y ,g)

can be added, and we have a contradiction.

When defining Y , we arrange that whenever Y ∩ β is determined, the
next element of Y is as small as possible. By a similar argument as
above, this guarantees that N ∩ ω1 ∈ Y . But then it follows that Y is
stationary.
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Club Isomorphisms and Preserving a Suslin Tree

Proposition
Suppose that S is a normal Suslin tree. Let T and U be normal
Aronszajn trees such that

S “T and U are Aronszajn.”

Then Q(T ,U) “S is Suslin.”

Proof.
Suppose that there is a condition p = (x , f ) ∈ Q(T ,U) such that

p Q(T ,U) “Ȧ = {ḃα : α < ω1} is an uncountable antichain of S.”

We will find some a ∈ S which forces in S that either T or U is not
Aronszajn.
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Club Isomorphisms and Preserving a Suslin Tree

For each limit ordinal α < ω1 above max(x), fix some

(xα, fα) ≤ (x ∪ {α}, f )

which decides ḃα as some bα ∈ S. Note that if (xα, fα) and (xβ, fβ) are
compatible, then bα and bβ are incomparable in S.

By an argument which we will omit, there exists some a ∈ S such that

a S “{α < ω1 : bα ∈ ĠS} is stationary in ω1.”

We claim that a forces in S that either T or U is not Aronszajn.
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Club Isomorphisms and Preserving a Suslin Tree

Let GS be a generic filter on S which contains a. Then GS is a cofinal
branch of S. Let Y be the stationary set {α < ω1 : bα ∈ GS}.

Consider the collection

{(xα, fα) : α ∈ Y}.

Then Y is stationary and for all α ∈ Y , α ∈ xα.

Now Q(T ,U) is the same forcing in both V and V [GS]. If T and U are
still Aronszajn in V [GS], then we can apply the compatibility lemma to
find α < β in Y such that (xα, fα) and (xβ, fβ) are compatible in
Q(T ,U). As noted above, this implies that bα and bβ are incomparable
in S. But this is impossible because bα and bβ are both in the branch
GS.
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Consistency Result

Now we describe the consistency proof. We start with a model V in
which GCH holds and there exists a free Suslin tree R.

We define by recursion a countable support forcing iteration

〈Pβ, Q̇α : β ≤ ω2, α < ω2〉.

At each stage α < ω2, we consider names for normal Aronszajn trees
Ṫα and U̇α such that every derived tree of R forces in VPα that Ṫα and
U̇α are Aronszajn. Then we let Q̇α = Q(Ṫα, U̇α).
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Consistency Result

By the previous theorem, in VPα the forcing Q̇α forces that every
derived tree of R is still Suslin, and hence R is still a free Suslin tree.
By the forcing iteration theorem, Pω2 is proper and preserves the fact
that R is free as well. Also Pω2 is ω2-c.c.

Let G be a generic filter on Pω2 . Then in V [G], R is a free Suslin tree. If
T and U are normal Aronszajn trees neither of which has a derived
tree of R which club embeds into it, then T and U are club isomorphic.
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Some Open Problems

Question (Shelah and Zapletal [SZ1999])
Does the existence of a Suslin tree imply that there exists a free Suslin
tree?

Question
Is it consistent to have a model of ¬SH with fewer than 2ω many
club-isomorphism-types of Suslin trees?

Question (Abraham and Shelah [AS1985])
Is it consistent to have a unique Suslin tree up to club isomorphism?
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