Paul Larson

Department of Mathematics Miami University Oxford, Ohio 45056

larsonpb@miamioh.edu

August 18, 2022

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

# P.B. Larson

# Review

- Turbulence and Placidity
- Turbulence
- Placidity
- Nested sequences
- Generic coherent sequences
- Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Let *E* be an analytic equivalence relation on a Polish space *X*. An *E-pin* is a pair $(Q, \tau)$ such that

- Q is a partial order
- $\tau$  is a Q-name for an element of X and,
- for all generic (G, H) for  $Q \times Q$ ,  $V[G, H] \models \tau_G E \tau_H$ .

An E-pin represents the same E-equivalence class in all extensions by Q, even though the class may have no members in the ground model.

Note that for any two V-generic filters  $G_0, G_1 \subseteq Q$ , there exists in some forcing extension an  $H \subseteq Q$  such that  $(G_0, H)$  and  $(G_1, H)$  are both V-generic for  $Q \times Q$ .

# Pins

P.B. Larson

# Review

Turbulence and Placidit

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Two pins (Q, au), ( $P, \sigma$ ) are E-equivalent if

 $V[G,H] \models \tau_G E \sigma_H$ 

holds for all generic

 $(G, H) \subseteq Q \times P.$ 

The corresponding equivalence classes are the *virtual* equivalence classes of *E*.

# Equivalence of pins

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# P.B. Larson

# Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# It is sometimes possible to prove nonreducibility results between analytic equivalence relations via the association of cardinal invariants.

For any analytic equivalence relation E, we let:

- κ(E), the least cardinal κ such that every E-pin is equivalent to one of the form (Q, τ), where |Q| < κ (set to ∞ if there is no such κ and ℵ<sub>1</sub> if E is pinned)
- λ(E), the cardinality of the set of equivalence classes of E-pins (if it exists, otherwise ∞)

Note that  $\lambda(E) \leq 2^{\kappa(E)}$ .

# $\kappa$ and $\lambda$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

P.B. Larson

# Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

If 
$$E$$
 is pinned, then  $\kappa(E) = \aleph_1$  and  $\lambda(E) \leq 2^{\aleph_0}$ .

If *E* is the product of 
$$\langle E_n : n \in \omega \rangle$$
, then  
 $\kappa(E) \leq (\prod_n \kappa(E_n))^+$ 

and

$$\lambda(E)=\prod_n\lambda(E_n).$$

If *E* is the increasing union of  $\{E_n : n \in \omega\}$  then

$$\lambda(E) = \sup_n \lambda(E_n)$$

and

$$\kappa(E) = \sup_n \kappa(E_n).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

P.B. Larson

# Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# $\lambda$ and the Friedman-Stanley jump

If  $E^+$  is the Friedman-Stanley jump of E (and E has infinitely many classes), then

$$\lambda(E^+)=2^{\lambda(E)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

P.B. Larson

# Review

- Turbulence and Placidit
- Turbulence
- Placidity
- Nested sequences
- Generic coherent sequences
- Choicecoherent sequences
- $\mathbb{E}_1$  and orbit relations

# Comparing equivalence relations

f 
$$E \leq_{\mathrm{a}} F$$
 then  $\kappa(E) \leq \kappa(F)$  and  $\lambda(E) \leq \lambda(F)$ .

This shows that:

- If  $E \leq_{a} F$  and F is pinned, then so is E;
- $\mathbb{E}_{\omega_1} \not\leq_{\mathrm{a}} \mathbb{F}_2;$
- for any *E* with infinitely many classes,  $E^+ \leq_a E$ , where  $E^+$  is the Friedman-Stanley jump of *E*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

P.B. Larson

# Review

Turbulence and Placidit

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Bounds for Borel relations

Work of Jacques Stern from 1984 shows that if *E* is a Borel equivalence relation of Borel rank  $\alpha$ , then

 $\kappa(E) < \beth_{\alpha}^+$ 

for every Borel equivalence relation E.

In particular,

 $\kappa(E) < \beth_{\omega_1}$ 

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

for every Borel equivalence relation E.

# P.B. Larson

# Review

Turbulence and Placidit

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

The rest of this lecture is on Chapters 3 and 4.

In Chapter 3 we study non-mutually generic extensions with the property that  $V[H_1] \cap V[H_2] = V$ .

In Chapter 4 we study  $\subseteq$ -descending  $\omega$ -sequences of models of ZFC.

We relate these situations to the study of virtual equivalence classes, but also prepare for forcing arguments from the second half of the book.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

P.B. Larson

#### Review

# Turbulence and Placidity

Turbulence

Placidity

# Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Chapter 3 : Turbulence and Placidity

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

P.B. Larson

#### Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Disjoint extensions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Solovay showed that whenever  $H_1$  and  $H_2$  are mutually generic filters,

$$V[H_1] \cap V[H_2] = V.$$

Chapter 3 presents a method for finding non-mutually generic filters  $H_1$  and  $H_2$ , existing in a common forcing extension, such that

 $V[H_1] \cap V[H_2] = V.$ 

# P.B. Larson

### Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# $P_X$ and $\dot{x}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Given a Polish space X, we let  $P_X$  be the partial order of nonempty open subsets of X, ordered by inclusion.

This is Cohen forcing for X.

Since  $P_X$  is c.c.c., all pins of the form  $(P_X, \tau)$  are trivial.

Let  $\dot{x}$  be the canonical name for the corresponding generic element of X.

# P.B. Larson

### Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

We consider the situation where we have Polish spaces X, Y and Z such that  $P_X$  adds non-mutually generic filters

 $H \subseteq P_Y$ 

and

 $K \subseteq P_Z$ ,

with the property that

 $V[H] \cap V[K] = V.$ 

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# P.B. Larson

### Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Adding generics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

First, observe that if

$$f: X \to Y$$

is a continuous open function, then  $P_X$  forces that  $f(\dot{x}_G)$  will be a  $P_Y$ -generic element of Y.

To see this, note that if  $O \subseteq X$  is open and  $D \subseteq P_Y$  is dense open, then f[O] contains some  $U \in D$ , and

 $f^{-1}[U] \cap O$ 

is a condition in  $P_X$  below O forcing that U is in the filter generated by  $f(\dot{x}_G)$ .

# P.B. Larson

#### Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# A naive attempt

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Suppose that  $f: X \to Y$  and  $g: X \to Z$  are continuous open functions.

To carry out Solovay's argument for

```
V[G] \cap V[H] = V,
```

it would suffice to have that whenever  $O \subseteq X$  is nonempty and open, and  $W_0$  and  $W_1$  are disjoint open subsets of f[O],

$$g[f^{-1}[W_0]] \cap g[f^{-1}[W_1]]$$

is nonempty.

In general this is too much to hope for, however.

# P.B. Larson

### Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

Suppose then that  $f: X \to Y$  and  $g: X \to Z$  are continuous and open.

An (f,g)-walk is a sequence

 $\langle x_i : i \leq k \rangle \in X^{<\omega}$ 

such that for each i < k, either

 $f(x_i) = f(x_{i+1})$ 

 $g(x_i) = g(x_{i+1}).$ 

or

# Walks

・ロト・西・・田・・田・・日・

P.B. Larson

### Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Independence (I)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We say that f and g are independent if for every nonempty open  $O \subseteq X$  there exists a nonempty open

 $U \subseteq f[O]$ 

such that for all nonempty open  $W_0, W_1 \subseteq U$  there is an (f,g)-walk consisting of points in O which starts in  $f^{-1}[W_0]$  and ends in  $f^{-1}[W_1]$ .

This relation is symmetric in f and g.

P.B. Larson

Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Independence (II)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An alternate characterization of independence (due to Andy Zucker) is : f and g are independent if, whenever

 $h: Y \to W$ 

and

$$k: Z \to W$$

(for some Polish space W) are Borel, and

$$\{x \in X : h(f(x)) = k(g(x))\}$$

is nonmeager, there is a point  $w \in W$  such that

$${x \in X : h(f(x)) = k(g(x)) = w}$$

is nonmeager.

# Theorem

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

# Geometric Set Theory

P.B. Larson

# Review

# Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Continuous open functions

$$f: X \to Y$$

and

 $g: X \to Z$ 

are independent if and only if  $P_X$  forces that

 $V[f(\dot{x}_G)] \cap V[g(\dot{x}_G)] = V.$ 

P.B. Larson

Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Classification by countable structures

For any countable relational language  $\mathcal{L}$ , the set of  $\mathcal{L}$ -structures with domain  $\omega$  is a Polish space.

Let  $E_{\mathcal{L}}$  be the isomorphism relation on this space.

An equivalence relation is said to be classifiable by countable structures if it is Borel reducible to  $E_{\mathcal{L}}$ , for some  $\mathcal{L}$ .

A Borel equivalence relation is classifiable by countable structures if and only if it is Borel reducible to a countable iterate of the Friedman-Stanley jump on equality (taking disjoint unions at limit stages).

# P.B. Larson

# Review

Turbulence and Placidit

# Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Let $\Gamma$ be a group acting continuously on a Polish space Y. Given $U \subseteq \Gamma$ and $O \subseteq Y$ , a (U, O)-walk is a finite sequence $\langle y_i : i \leq k \rangle$

from O such that, for each i < k,

 $y_{i+1} = \gamma_i \cdot y_i$ 

for some  $\gamma_i \in U$ .

The (U, O)-orbit of  $y \in O$  is the set of all terminal points of (U, O)-walks starting at y.

# Walks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# P.B. Larson

### Review

Turbulence and Placidit

# Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Turbulence

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let  $\Gamma$  be a group acting continuously on a Polish space Y. The action is turbulent at  $y \in Y$  if for all open U, O with

 $1 \in U$ 

and

 $y \in O$ ,

the (U, O)-orbit of y is somewhere dense.

The action is generically turbulent if its orbits are meager and dense, and the action is turbulent at comeagerly many y.

# P.B. Larson

# Review

Turbulence and Placidity

# Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

Let  $c_0$  be the subgroup of  $\mathbb{R}^{\omega}$  consisting of sequences converging to 0, under pointwise addition.

Let  $\mathbb{R}^\omega$  have the topology induced by the sup norm.

The action of  $c_0$  on  $\mathbb{R}^{\omega}$  by pointwise addition is (everywhere) turbulent.

# Examples (I)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# P.B. Larson

### Review

Turbulence and Placidity

# Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Examples (II)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let  $I_2$  be the set of  $x \subseteq \omega$  for which the sum

$$\sum \{\frac{1}{n+1} \colon n \in x\}$$

# is finite.

Letting  $\triangle$  be the symmetric difference operator,  $(I_2, \triangle)$  is a Polish group.

The corresponding action  $x \cdot y = x \bigtriangleup y$  on  $\mathcal{P}(\omega)$  is turbulent.

The same holds for asymptotic-density-0 ideal.

P.B. Larson

Review

Turbulence and Placidity

# Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# (Half of) Hjorth's theorem

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Turbulent actions are not classifiable by countable structures.

P.B. Larson

### Review

Turbulence and Placidity

# Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Forcing with a turbulent action (I)

Let  $\Gamma$  be a Polish group acting continuously on a Polish space Y, and let X be  $\Gamma \times Y$ .

Let  $f: X \to Y$  be the second-coordinate projection, and let  $g: X \to Y$  be given by the group action, i.e.,  $g(\gamma, y) = \gamma \cdot y$ .

Then f and g are continuous and open.

A walk  $\langle y_i : i \leq k \rangle$  in our second sense (via  $\langle \gamma_i : i < k \rangle$ ) induces a walk

$$(\gamma_0, y_0), (1, y_1), (\gamma_1, y_1), \dots, (1, y_k)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

in our first sense.

P.B. Larson

### Review

Turbulence and Placidity

# Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Forcing with a turbulent action (II)

If we assume in addition that all obits of the action are dense and meager, then f and g are independent if and only if the action is generically turbulent.

In this case, letting 
$$(\gamma_{\mathcal{G}}, y_{\mathcal{G}})$$
 be V-generic for  $P_X$ ,

$$V[y_G] \cap V[\gamma_G \cdot y_G] = V.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# P.B. Larson

# Review

Turbulence and Placidit

Turbulence

# Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Placidity

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let E be an analytic equivalence relation on a Polish space X.

We say that E is placid if, whenever  $V[H_0]$  and  $V[H_1]$  are separately generic extensions of V (inside some ambient generic extension) such that

$$V[H_0] \cap V[H_1] = V$$

and  $x_0 \in V[H_0]$  and  $x_1 \in V[H_1]$  are E-related points in the space X, then they are E-related to some point in V.

Placid implies pinned.

# Examples

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Geometric Set Theory P.B. Larson

### Review

- Turbulence and Placidity
- Turbulence
- Placidity
- Nested sequences
- Generic coherent sequences
- Choicecoherent sequences
- $\mathbb{E}_1$  and orbit relations

- Countable Borel equivalence relations are placid.
- Let X be the set of functions from 2<sup><ω</sup> to 2<sup>ω</sup> and let J be the ideal on 2<sup><ω</sup> generated by the compatible sets.

Then mod-J-equivalence is a placid equivalence relation on X.

- $\mathbb{E}_1$  is placid.
- $\mathbb{E}_2$  (summability equivalence) is pinned but not placid.

## P.B. Larson

### Review

Turbulence and Placidity

# Turbulence

# Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Virtual placidity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We say that *E* is virtually placid if, whenever  $V[H_0]$  and  $V[H_1]$  are separately generic extensions of V (inside some ambient generic extension) such that

$$V[H_0] \cap V[H_1] = V$$

and  $\langle Q_0, \tau_0 \rangle \in V[H_0]$  and  $\langle Q_1, \tau_1 \rangle \in V[H_1]$  are equivalent *E*-pins, then they are *E*-related to some *E*-pin in V.

P.B. Larson

### Review

Turbulence and Placidity

Turbulence

# Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Equivalently, E is virtually placid if and only if, for any separately generic extensions $V[H_0]$ , $V[H_1]$ such that

 $V[H_0] \cap V[H_1] = V$ 

Virtual placidity (II)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

and E-related points  $x_0 \in V[H_0]$  and  $x_1 \in V[H_1]$ ,  $x_0$  and  $x_1$  are realizations of some virtual *E*-class in *V*.

Placid implies virtually placid.

# P.B. Larson

# Proposition

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Review

Turbulence and Placidity

Turbulence

# Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

An analytic equivalence relation E on a Polish space X is placid if and only if it is pinned and virtually placid.

 $\mathbb{F}_2$  is virtually placid but not placid, since it is not pinned.

# P.B. Larson

Suppose that

# Review

Turbulence and Placidit

Turbulence

# Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Γ is a Polish group acting continuously in a generically turbulent way on a Polish space X, inducing an equivalence relation E,

- *F* is a virtually placid equivalence relation on a Polish space *Y* and
- *h* is a Borel function from *X* to *Y* sending *E*-equivalent points to *F*-equivalent points.

Then there is a comeager set  $B \subseteq X$  such that h[B] is contained in a single *F*-class.

Ergodicity

# Proof sketch

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

### Review

and Placidit

Geometric Set Theory

P.B. Larson

Turbulence

# Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

Force with  $P_{\Gamma imes X}$ , getting generic  $(\gamma, x)$  such that

$$V[x] \cap V[\gamma \cdot x] = V.$$

Since  $h(x)Fh(\gamma \cdot x)$ , h(x) and  $h(\gamma \cdot x)$  are in a virtual equivalence class in V.

Since  $P_{\Gamma \times X}$  carries no nontrivial pins, there is a  $y \in V$  which is *F*-equivalent to *x* and  $\gamma \cdot x$ .

 $h^{-1}[[y]_F]$  is as desired (by the genericity of x it can't be meager).

# P.B. Larson

### Review

Turbulence and Placidit

Turbulence

# Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

The class of virtually placid equivalence relations is closed under:

- Borel almost reduction;
- countable products;
- countable increasing unions;
- The Friedman-Stanley jump.

# Closure

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# P.B. Larson

# Review

Turbulence and Placidity

Turbulence

# Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Since every equivalence relation classifiable by countable structures is Borel reducible to a countable iterate of equality via the Friedman-Stanley jump, it follows that every equivalence relation classifiable by countable structures is virtually placid.

This gives another proof of Hjorth's theorem.

# Corollary

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

P.B. Larson

Review

Turbulence and Placidity

Turbulence

Placidity

# Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Chapter 4 : Nested sequences of models of ZFC

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

# P.B. Larson

# Review

Turbulence and Placidit

Turbulence

Placidity

# Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Coherent sequences

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We say that a  $\subseteq$ -decreasing sequence

 $\langle M_n : n \in \omega \rangle$ 

of transitive models of ZFC is coherent if, for every ordinal  $\lambda \in M_0$  and every natural number *n*, the sequence

$$\langle M_m \cap V_\lambda : m \in \omega \setminus n \rangle$$

belongs to  $M_n$ .

Given a coherent sequence of models  $\langle M_n : n \in \omega \rangle$ , a sequence  $\langle v_n : n \in \omega \rangle$  is coherent if for every  $n \in \omega$ ,

$$\langle \mathbf{v}_m : m \in \omega \setminus n \rangle \in M_n.$$

# P.B. Larson

#### Review

Turbulence and Placidit

Turbulence

Placidity

# Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# The trivial coherent sequence: each $M_n$ is V.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

P.B. Larson

#### Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Generic coherent sequences

A coherent sequence  $\langle M_n : n \in \omega \rangle$  is said to be *M*-generic if *M* is a model of ZFC contained in each  $M_n$ , and  $M_0$  is a generic extension of *M*.

This implies that all models  $M_n$  are generic extensions of Mand that  $M_n$  is a generic extension of  $M_m$  whenever  $n \le m$ .

A natural way to produce V-generic coherent sequences (with M = V) is to force with a product  $\prod_{n \in \omega} P_n$ , and let  $M_n$  be

 $V[\langle G_m: n \leq m < \omega \rangle].$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# P.B. Larson

# Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

# Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Coherent sequences of models are most often formed as generic extensions of the constant sequence $\langle M_n : n \in \omega \rangle$ using the

Projections

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

following definition and theorem.

A projection from a poset Q to a poset P is a pair of order-preserving functions  $\pi: Q \to P$  and  $\xi: P \to Q$  such that

- $\pi \circ \xi$  is the identity on *P*;
- whenever  $\pi(q) \leq p$  then  $q \leq \xi(p)$ ;
- whenever  $p \leq \pi(q)$  then there is a  $q' \leq q$  such that  $\pi(q') \leq p$ .

The  $\pi$ -image of a generic filter on Q is then a generic filter on P.

# P.B. Larson

# Review

Turbulence and Placidit

Turbulence

Placidity

Nested sequences

# Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# (1) For any posets P and R, the maps

$$\pi(p,r)=p$$

and

$$\xi(p) = (p, 1_R)$$

form a projection from  $P \times R$  to P.

(2) When  $f: X \to Y$  is continuous and open,

$$\pi(O)=f[O]$$

and

$$\xi[U] = f^{-1}[U]$$

form a projection from  $P_X$  to  $P_Y$ .

# Examples

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

P.B. Larson

# Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

# Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Coherent sequences of posets

If  $\overline{M} = \langle M_n : n \in \omega \rangle$  is a coherent sequence of models of ZFC, an  $\overline{M}$ -coherent sequence of posets is a sequence

$$\langle P_n, \pi_{nm}, \xi_{nm} : n \leq m \in \omega \rangle$$

# such that

- For all  $n \le m$  the maps  $\pi_{nm} : P_n \to P_m$  and  $\xi_{mn} : P_m \to P_n$  form a projection of  $P_n$  to  $P_m$ ;
- for all  $k \leq n \leq m$ ,  $\pi_{km} = \pi_{nm} \circ \pi_{kn}$  and  $\xi_{mk} = \xi_{nk} \circ \xi_{mn}$ ;
- for each *n*, the functions  $\pi_{nn} = \xi_{nn} = id_{P_n}$ ;
- for every number  $k \in \omega$ , the sequence

$$\langle P_n, \pi_{nm}, \xi_{nm} : k \le n \le m \in \omega \rangle$$

belongs to the model  $M_k$ .

In particular, every commutative sequence of projections

# P.B. Larson

### Review

Turbulence and Placidit

Turbulence

Placidity

Nested sequences

# Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Coherent posets theorem

Let  $ar{M} = \langle M_n : n \in \omega 
angle$  be a coherent sequence of models of ZFC and

$$\langle P_n, \pi_{nm}, \xi_{nm} : n \leq m \in \omega \rangle$$

be a  $\overline{M}$ -coherent sequence of posets. Let  $G \subseteq P_0$  be a filter generic over  $M_0$ , and for each  $n \in \omega$  let

$$G_n = \xi_{n0}^{-1}[G].$$

Then the sequence

 $\langle M_n[G_n] : n \in \omega \rangle$ 

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

is a coherent sequence of models of ZFC.

# Theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Geometric Set Theory

# P.B. Larson

### Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

# Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

If  $\langle M_n : n \in \omega \rangle$  is a coherent V-generic sequence of models of ZFC, then

$$M_{\omega} = \bigcap_{n} M_{n}$$

is a class in all models  $M_n$ , and it is a model of ZF + DC.

# P.B. Larson

# Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

# Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Let $\mathbb{G}$ be the graph on $2^{\omega}$ which connects two points if they disagree at an odd (finite) number of points.

Example

This graph has uncountable Borel chromatic number, and chromatic number 2 in the presence of an  $\mathbb{E}_0$ -selector (e.g., in ZFC).

Let  $c \colon \omega_1 \times \omega$  be a Cohen-generic map, and for each  $n \in \omega$  let

$$c_n = c \restriction \omega_1 \times (\omega \setminus n).$$

Let  $M_n = V[c_n]$ . In the model

$$M_{\omega} = \bigcap_{n} M_{n}$$

the chromatic number of  $\mathbb{G}$  is greater than 2, so the Axiom of Choice fails.

P.B. Larson

### Review

Turbulence and Placidit

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Choice-coherent sequences

Let  $\langle M_n : n \in \omega \rangle$  be an inclusion decreasing sequence of transitive models of ZFC.

We say that the sequence is choice-coherent if it is coherent and for every ordinal  $\lambda \in M_0$  there is a well-ordering  $\leq_{\lambda}$  of

 $V_{\lambda} \cap M_0$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

such that its intersection with each model  $M_n$  belongs to  $M_n$ .

# Theorem

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Review

Turbulence and Placidity

Geometric Set Theory

P.B. Larson

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

If  $\overline{M} = \langle M_n : n \in \omega \rangle$  is a coherent V-generic sequence then  $\overline{M}$  is choice-coherent if and only if

$$M_{\omega} = \bigcap_{n \in \omega} M_n$$

is a model of ZFC.

# P.B. Larson

# Review

Turbulence and Placidit

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Diagonal distributivity

Let  $\langle P_n, \pi_{nm}, \xi_{mn} : n \leq m \in \omega \rangle$  be a coherent sequence of posets.

The diagonal game is the following inifnite game between Players I and II.

In round *n* Player I plays  $p_n \in P_n$  and Player II responds with  $q_n \leq p_n$ . Additionally,  $p_{n+1} \leq \pi_{nn+1}(q_n)$ .

In the end, Player II wins if there is a condition  $r \in P_0$  such that  $\pi_{0n}(r) \leq q_n$  holds for all  $n \in \omega$ .

The sequence is diagonally distributive if Player I has no winning strategy in the diagonal game.

# P.B. Larson

# Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Suppose that  $\langle {\it Q}_m:m\in\omega\rangle$  are arbitrary posets, and let

$$P_n=\prod_{m\geq n}Q_m$$

be the countable support product with the natural projection maps from  $P_n$  to  $P_m$  for  $n \le m$ .

Player II has a simple winning strategy in the diagonal game in this setup: set  $q_n = p_n$ .

# Theorem 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Geometric Set Theory

# P.B. Larson

### Review

Turbulence and Placidit

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

Let  $\langle M_n:n\in\omega\rangle$  be a choice-coherent sequence of models of ZFC. Let

$$\langle P_n, \pi_{nm}, \xi_{mn} : n \leq m \in \omega \rangle$$

be a coherent sequence of posets which is diagonally distributive in  $M_0$ . Let  $G \subseteq P_0$  be a filter generic over  $M_0$ , and let for each  $n \in \omega$  let  $G_n = \xi_{n0}^{-1}$ . Then the sequence

$$\langle M_n[G_n] : n \in \omega \rangle$$

is choice-coherent, and the models  $\bigcap_n M_n$  and  $\bigcap_n M_n[G_n]$  contain the same  $\omega$ -sequences of ordinals

# Theorem 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Review

and Placidit

Geometric Set Theory

P.B. Larson

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

Let  $\langle M_n : n \in \omega \rangle$  be a choice-coherent sequence generic over Vand let E be an orbit equivalence relation with code in

$$M_{\omega} = \bigcap_{n} M_{n}.$$

If a virtual *E*-class is represented in each  $M_n$ , then it is represented in  $M_{\omega}$ .

The same conclusion holds for analytic equivalence relations that are almost-reducible to an orbit equivalence relation.

# P.B. Larson

### Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# $\mathbb{E}_1$ (I)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The conclusion of the previous theorem fails for  $\mathbb{E}_1$  on  $(2^{\omega})^{\omega}$ .

To see this, let Q be the full support product of  $\omega$ -many copies of  $P_{2^{\omega}}$ , and for each  $n \in \omega$  let  $Q_n$  be the product of the copies of  $P_{2^{\omega}}$  indexed by natural numbers  $\geq n$ .

The posets  $Q_n$  for  $n \in \omega$  form a coherent sequence.

Let  $G \subseteq Q$  be a generic filter, and for each  $n \in \omega$  let  $G_n \subseteq Q_n$  be the restriction of Q to conditions in  $Q_n$ .

# P.B. Larson

# Review

Turbulence and Placidit

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# $\mathbb{E}_1$ (II)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Then  $\langle V[G_n] : n \in \omega \rangle$  is a choice-coherent sequence of models, and all reals in  $\bigcap_n V[G_n]$  are in V.

In  $V[G_n]$ , let  $x_n \in X$  be the sequence defined by letting  $x_n(m)$  be the zero sequence if m < n and the *m*th generic real otherwise.

The points  $x_n$  all represent the same  $\mathbb{E}_1$ -class, which is not represented in V and therefore not represented in  $\bigcap_n V[G_n]$ 

# P.B. Larson

### Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Theorem (Kechris-Louveau). $\mathbb{E}_1$ is not Borel reducible to any orbit equivalence relation.

# Corollary



P.B. Larson

### Review

Turbulence and Placidity

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

# Necessity of virtual classes

 $\mathbb{F}_2$  (which is an orbit equivalence relation) shows that is necessary to consider virtual *E*-classes as opposed to just *E*-classes in the statement of Theorem 2.

To see this, start with the trivial coherent sequence (where each model is V) and let  $P_n$  be the countable support product of  $\omega$ -many copies of the poset  $\operatorname{Col}(\omega, 2^{\omega})$ .

This induces a choice-coherent sequence of models  $\langle V[G_n] : n \in \omega \rangle$  such that the model  $\bigcap_n V[G_n]$  contains only ground model  $\omega$ -sequences of ordinals.

# P.B. Larson

### Review

Turbulence and Placidit

Turbulence

Placidity

Nested sequences

Generic coherent sequences

Choicecoherent sequences

 $\mathbb{E}_1$  and orbit relations

Each model  $V[G_n]$  contains a surjection from  $\omega$  to  $2^{\omega} \cap V$ , and all of these surjection are  $\mathbb{F}_2$ -related.

There is no  $\mathbb{F}_{2^{-}}$  equivalent of them in the intersection model, which has the same reals as V.

However, the reals of V induce a virtual  $\mathbb{F}_2$ -class related to these enumerations which is in V, so also in the intersection model.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @