GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions

Reflection of stationary sets and GDST

Miguel Moreno University of Vienna FWF Meitner-Programm

Young Set Theory Workshop 2022

20 August, 2022

< 口 > < 同 >

Miguel Moreno (UV) Reflection of stationary sets and GDST YSTW 2022 1 of 32

GDST 0000	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions 000000000

This is a joint work with Gabriel Fernandes and Assaf Rinot.

Miguel Moreno (UV) Reflection of stationary sets and GDST YSTW 2022

< ロ > < 回 > < 回 > < 回 > < 回 >

2 of 32

GDST ●000	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions

Miguel Mo

Reflection

Suppose κ is an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

reno (UV)	YS
of stationary sets and GDST	

イロン イ団 と イヨン イヨン

W 2022

3 of 32

GDST ●000	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions 000000000

Suppose κ is an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The generalised Baire space is the space κ^{κ} endowed with the bounded topology,

YSTW 2022

< 口 > < 同 >

< ∃ >

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
●000		00000	000000	000000000

Suppose κ is an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The generalised Baire space is the space κ^{κ} endowed with the bounded topology, for every $\eta \in \kappa^{<\kappa}$ the following set

$$N_{\eta} = \{\xi \in \kappa^{\kappa} \mid \eta \subseteq \xi\}$$

is a basic open set.

YSTW 2022

GDST ●000	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions 000000000

Suppose κ is an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The generalised Baire space is the space κ^{κ} endowed with the bounded topology, for every $\eta \in \kappa^{<\kappa}$ the following set

$$N_{\eta} = \{\xi \in \kappa^{\kappa} \mid \eta \subseteq \xi\}$$

is a basic open set.

Miguel Moreno (UV)

The generalised Cantor space is the subspace 2^{κ} .

GDST o●oo	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions 000000000

Reductions

For i < 2, let X_i be some space from the collection $\{\theta^{\kappa} \mid \theta \in [2, \kappa]\}$. Let R_0 and R_1 be binary relations over X_0 and X_1 , respectively.

YSTW 2022

イロト イポト イヨト イヨト

GDST o●oo	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions 000000000

Reductions

For i < 2, let X_i be some space from the collection $\{\theta^{\kappa} \mid \theta \in [2, \kappa]\}$. Let R_0 and R_1 be binary relations over X_0 and X_1 , respectively.

Definition

A function $f: X_0 \to X_1$ is said to be a *reduction of* R_0 *to* R_1 iff, for all $\eta, \xi \in X_0$,

 $\eta R_0 \xi$ iff $f(\eta) R_1 f(\xi)$.

イロト イポト イヨト イヨト

GDST o●oo	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions 000000000

Reductions

For i < 2, let X_i be some space from the collection $\{\theta^{\kappa} \mid \theta \in [2, \kappa]\}$. Let R_0 and R_1 be binary relations over X_0 and X_1 , respectively.

Definition

A function $f: X_0 \to X_1$ is said to be a *reduction of* R_0 *to* R_1 iff, for all $\eta, \xi \in X_0$,

 $\eta R_0 \xi$ iff $f(\eta) R_1 f(\xi)$.

The existence of a function f satisfying this is denoted by $R_0 \hookrightarrow R_1$.

YSTW 2022

イロト イボト イヨト イヨト

GDST oo●o	Stationary Reflection	Filter Reflection 00000	Forcing 000000	Reductions 000000000

Complexity

The existence of a continuous reduction f is denoted by $R_0 \hookrightarrow_c R_1$. We say that R_0 is at most as complex as R_1 .

(E)

GDST oo●o	Stationary Reflection 000000	Filter Reflection	Forcing 000000	Reductions 000000000

Complexity

The existence of a continuous reduction f is denoted by $R_0 \hookrightarrow_c R_1$. We say that R_0 is at most as complex as R_1 .

In the case $R_0 \hookrightarrow_c R_1$ and $R_1 \nleftrightarrow_c R_0$, we say that R_0 is less complex than R_0 .

YSTW 2022

イロト イボト イヨト イヨ

00000 00000	000000	

Complexity

The existence of a continuous reduction f is denoted by $R_0 \hookrightarrow_c R_1$. We say that R_0 is at most as complex as R_1 .

In the case $R_0 \hookrightarrow_c R_1$ and $R_1 \nleftrightarrow_c R_0$, we say that R_0 is less complex than R_0 .

In generalized descriptive set theory, the complexity of a theory can be study by studying the complexity of the isomorphism relation of the theory.

YSTW 2022

イロト イポト イヨト イヨト

GDST ooo●	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions 000000000

In model theory, the complexity of a theory can be measure by the number of models of the theory.

Image: Image:

∃ ► < ∃ ►</p>

GDST ooo●	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions 000000000

In model theory, the complexity of a theory can be measure by the number of models of the theory.

Shelah's main gap theorem can be understood as: *Classifiable theories are less complex than non-classifiable theories, in the model theory complexity.*

YSTW 2022

GDST ooo●	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions 000000000

In model theory, the complexity of a theory can be measure by the number of models of the theory.

Shelah's main gap theorem can be understood as: *Classifiable theories are less complex than non-classifiable theories, in the model theory complexity.*

Question. Are classifiable theories less complex than non-classifiable theories, in the generalised descriptive set theory complexity?

YSTW 2022

GDST 0000	Stationary Reflection ●00000	Filter Reflection	Forcing 000000	Reductions

Stationary reflection

Let α be an ordinal of uncountable cofinality. A set $C \subseteq \alpha$ is a club if it is closed and unbounded. A set $S \subseteq \alpha$ is stationary if for all club $C \subset \alpha$, $C \cap S \neq \emptyset$.

YSTW 2022

GDST 0000	Stationary Reflection ●00000	Filter Reflection	Forcing 000000	Reductions

Stationary reflection

Let α be an ordinal of uncountable cofinality. A set $C \subseteq \alpha$ is a club if it is closed and unbounded. A set $S \subseteq \alpha$ is stationary if for all club $C \subset \alpha$, $C \cap S \neq \emptyset$.

Definition

Let $\alpha \in \kappa$ be an ordinal of uncountable cofinality, and a stationary $S \subseteq \kappa$, we say that S reflects at α if $S \cap \alpha$ is stationary in α

YSTW 2022

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000	●00000		000000	000000000

Stationary reflection

Let α be an ordinal of uncountable cofinality. A set $C \subseteq \alpha$ is a club if it is closed and unbounded. A set $S \subseteq \alpha$ is stationary if for all club $C \subset \alpha$, $C \cap S \neq \emptyset$.

Definition

Let $\alpha \in \kappa$ be an ordinal of uncountable cofinality, and a stationary $S \subseteq \kappa$, we say that S reflects at α if $S \cap \alpha$ is stationary in α

If κ is a weakly compact cardinal, every stationary subset of κ reflects at a regular cardinal $\alpha < \kappa$.

YSTW 2022

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
	00000			

Equivalence modulo nonstationary

Definition

For every stationary set $S \subseteq \kappa$ and $\theta \in [2, \kappa]$, the equivalence relation $=_{S}^{\theta}$ over the subspace θ^{κ} is defined via

 $\eta =_{\mathcal{S}}^{\theta} \xi$ iff $\{\alpha \in \mathcal{S} \mid \eta(\alpha) \neq \xi(\alpha)\}$ is non-stationary.

YSTW 2022

(日) (四) (日) (日) (日)

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
	00000			

Equivalence modulo nonstationary

Definition

For every stationary set $S \subseteq \kappa$ and $\theta \in [2, \kappa]$, the equivalence relation $=_{S}^{\theta}$ over the subspace θ^{κ} is defined via

 $\eta =_{\mathcal{S}}^{\theta} \xi$ iff $\{\alpha \in \mathcal{S} \mid \eta(\alpha) \neq \xi(\alpha)\}$ is non-stationary.

Definition

The quasi-order \leq^{S} over κ^{κ} is defined via

 $\eta \leq^{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) > \xi(\alpha)\}$ is non-stationary.

Miguel Moreno (UV)

Reflection of stationary sets and GDST

YSTW 2022

< ロ > < 回 > < 回 > < 回 > < 回 >

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
	00000			

Equivalence modulo nonstationary

Definition

For every stationary set $S \subseteq \kappa$ and $\theta \in [2, \kappa]$, the equivalence relation $=_{S}^{\theta}$ over the subspace θ^{κ} is defined via

 $\eta =_{\mathcal{S}}^{\theta} \xi$ iff $\{\alpha \in \mathcal{S} \mid \eta(\alpha) \neq \xi(\alpha)\}$ is non-stationary.

Definition

The quasi-order \leq^{S} over κ^{κ} is defined via

 $\eta \leq^{S} \xi$ iff $\{\alpha \in S \mid \eta(\alpha) > \xi(\alpha)\}$ is non-stationary.

The quasi-order \subseteq^{S} over 2^{κ} is nothing but $\leq^{S} \cap (2^{\kappa} \times 2^{\kappa})$.

Miguel Moreno (UV) Reflection of stationary sets and GDST

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000	00●000	00000	000000	000000000
Progress				

Let us denote by $=_{\lambda}^{\theta}$ the relation $=_{S}^{\theta}$ when $S = \{ \alpha < \kappa \mid cf(\alpha) = \lambda \}.$

Miguel Moreno (UV) Reflection of stationary sets and GDST YSTW 2022 9 of 32

GDST 0000	Stationary Reflection 00●000	Filter Reflection	Forcing 000000	Reductions 000000000

Progress

Let us denote by $=_{\lambda}^{\theta}$ the relation $=_{S}^{\theta}$ when $S = \{ \alpha < \kappa \mid cf(\alpha) = \lambda \}.$

Fact (Hyttinen-M)

The isomorphism relation of any classifiable theory is less complex than $=_{\lambda}^{\kappa}$ for all λ .

Miguel Moreno (UV) Reflection of stationary sets and GDST イロト イポト イヨト イヨト

GDST 0000	Stationary Reflection 00●000	Filter Reflection 00000	Forcing 000000	Reductions 000000000

Progress

Let us denote by $=_{\lambda}^{\theta}$ the relation $=_{S}^{\theta}$ when $S = \{ \alpha < \kappa \mid cf(\alpha) = \lambda \}.$

Fact (Hyttinen-M)

The isomorphism relation of any classifiable theory is less complex than $=^{\kappa}_{\lambda}$ for all λ .

Under some cardinal arithmetic assumptions the following can be proved:

Fact (Friedman-Hyttinen-Kulikov)

Suppose T is a non-classifiable theory. There is a regular cardinal $\lambda < \kappa$ such that $=^2_{\lambda}$ is at most as complex as the isomorphism relation of T.

YSTW 2022

イロト イポト イヨト イヨト

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
	000000			

Is
$$=^{\kappa}_{\lambda}$$
 Borel-reducible to $=^{2}_{\lambda}$, i.e. $=^{\kappa}_{\lambda} \hookrightarrow_{c} =^{2}_{\lambda}$, for all λ ?

Miguel Moreno (UV) Reflection of stationary sets and GDST YSTW 2022

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

10 of 32

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000	0000●0		000000	000000000

Comparing $=_{S}^{\kappa}$ and $=_{S}^{2}$

Fact (Asperó-Hyttinen-Kulikov-M)

If every stationary subset of X reflects at stationary many $\alpha \in Y$, then $=_X^{\kappa} \hookrightarrow_c =_Y^{\kappa}$.

イロト イヨト イヨト イヨト

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000	0000●0		000000	000000000

Comparing $=_{S}^{\kappa}$ and $=_{S}^{2}$

Fact (Asperó-Hyttinen-Kulikov-M)

If every stationary subset of X reflects at stationary many $\alpha \in Y$, then $=_X^{\kappa} \hookrightarrow_c =_Y^{\kappa}$.

Fact (Friedman-Hyttinen-Kulikov)

Suppose V = L, and $X \subseteq \kappa$ and $Y \subseteq reg(\kappa)$ are stationary. If every stationary subset of X reflects at stationary many $\alpha \in Y$, then $=^2_X \hookrightarrow_c =^2_Y$.

Miguel Moreno (UV)

Reflection of stationary sets and GDST

イロト 不得 トイヨト イヨト

GDST 0000	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions 000000000

Limitations

For all regular cardinals γ ≤ λ < κ, any X ⊆ S^κ_λ, X does not reflect at any α ∈ S^κ_γ.

イロト イヨト イヨト イヨト

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000	00000●		000000	000000000

Limitations

▶ For all regular cardinals $\gamma \leq \lambda < \kappa$, any $X \subseteq S_{\lambda}^{\kappa}$, X does not reflect at any $\alpha \in S_{\gamma}^{\kappa}$.

If κ = λ⁺ and □_λ holds, then for all X ⊆ κ there is a stationary Y ⊆ X such that Y does not reflect at any α < κ.</p>

イロト イヨト イヨト イヨ

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000	00000●		000000	000000000

Limitations

▶ For all regular cardinals $\gamma \leq \lambda < \kappa$, any $X \subseteq S_{\lambda}^{\kappa}$, X does not reflect at any $\alpha \in S_{\gamma}^{\kappa}$.

If κ = λ⁺ and □_λ holds, then for all X ⊆ κ there is a stationary Y ⊆ X such that Y does not reflect at any α < κ.</p>

Usual stationary reflection requires large cardinals.

イロト イポト イヨト イヨト

GDST 0000	Stationary Reflection	Filter Reflection ●0000	Forcing 000000	Reductions 000000000
C				

Capturing clubs

Suppose *S* is stationary subset of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

< 口 > < 同 >

YSTW 2022

13 of 32

GDST 0000	Stationary Reflection	Filter Reflection ●0000	Forcing 000000	Reductions 000000000

Capturing clubs

Suppose *S* is stationary subset of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

Definition We say that $\vec{\mathcal{F}}$ captures clubs iff, for every club $C \subseteq \kappa$, the set $\{\alpha \in S \mid C \cap \alpha \notin \mathcal{F}_{\alpha}\}$ is non-stationary;

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000		●0000	000000	000000000
_				

Capturing clubs

Suppose *S* is stationary subset of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

Definition

We say that $\vec{\mathcal{F}}$ captures clubs iff, for every club $C \subseteq \kappa$, the set $\{\alpha \in S \mid C \cap \alpha \notin \mathcal{F}_{\alpha}\}$ is non-stationary;

For any ordinal $\alpha < \kappa$ of uncountable cofinality, denote by $CUB(\alpha)$ the club filter of subsets of α . The sequence $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S_{\omega_1}^{\kappa} \rangle$ define by $\mathcal{F}_{\alpha} = CUB(\alpha)$, capture clubs.

イロト イヨト イヨト イヨ

GDST 0000	Stationary Reflection	Filter Reflection 0000	Forcing 000000	Reductions

Filter reflection

Suppose X and S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

< (T) >

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000		0●000	000000	000000000

Filter reflection

Suppose X and S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

Definition

We say that $X \not\in F$ -reflects to S iff $\not\in F$ captures clubs and, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y \cap \alpha \in \mathcal{F}_{\alpha}^+\}$ is stationary

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000		○●○○○	000000	000000000

Filter reflection

Suppose X and S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

Definition

We say that $X \not\in F$ -reflects to S iff $\not\in F$ captures clubs and, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y \cap \alpha \in \mathcal{F}_{\alpha}^+\}$ is stationary

Definition

We say that X f-reflects to S iff there exists a sequence of filters $\vec{\mathcal{F}}$ over a stationary subset S' of S such that X $\vec{\mathcal{F}}$ -reflects to S'.

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
		00000		

Strong forms of filter reflection

Definition

We say that X strongly $\vec{\mathcal{F}}$ -reflects to S iff $\vec{\mathcal{F}}$ captures clubs and, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y \cap \alpha \in \mathcal{F}_{\alpha}\}$ is stationary.

YSTW 2022

< 口 > < 同 >

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
		00000		

Strong forms of filter reflection

Definition

We say that X strongly $\vec{\mathcal{F}}$ -reflects to S iff $\vec{\mathcal{F}}$ captures clubs and, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y \cap \alpha \in \mathcal{F}_{\alpha}\}$ is stationary.

Definition

We say that $X \not\in F$ -reflects with \diamondsuit to S iff $\not\in F$ captures clubs and there exists a sequence $\langle Y_{\alpha} \mid \alpha \in S \rangle$ such that, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y_{\alpha} = Y \cap \alpha \& Y \cap \alpha \in \mathcal{F}_{\alpha}^+\}$ is stationary.

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
		00000		

Strong forms of filter reflection

Definition

We say that X strongly $\vec{\mathcal{F}}$ -reflects to S iff $\vec{\mathcal{F}}$ captures clubs and, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y \cap \alpha \in \mathcal{F}_{\alpha}\}$ is stationary.

Definition

We say that $X \ \vec{\mathcal{F}}$ -reflects with \diamondsuit to S iff $\vec{\mathcal{F}}$ captures clubs and there exists a sequence $\langle Y_{\alpha} \mid \alpha \in S \rangle$ such that, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y_{\alpha} = Y \cap \alpha \& Y \cap \alpha \in \mathcal{F}_{\alpha}^+\}$ is stationary.

We apply the same convention for X strongly f-reflects to S and X f-reflects with \diamondsuit to S

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000		000●0	000000	000000000

Properties

Fact (Monotonicity)

For stationary sets $Y \subseteq X \subseteq \kappa$ and $S \subseteq T \subseteq \kappa$. If X f-reflects to S, then Y f-reflects to T;

イロト イポト イヨト イヨト

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000		000●0	000000	000000000

Properties

Fact (Monotonicity)

For stationary sets $Y \subseteq X \subseteq \kappa$ and $S \subseteq T \subseteq \kappa$. If X f-reflects to S, then Y f-reflects to T;

Fact

Suppose X strongly f-reflects to S. If \Diamond_X holds, then so does \Diamond_S .

YSTW 2022

Image: A math a math

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000		000●0	000000	000000000

Properties

Fact (Monotonicity)

For stationary sets $Y \subseteq X \subseteq \kappa$ and $S \subseteq T \subseteq \kappa$. If X f-reflects to S, then Y f-reflects to T;

Fact

Suppose X strongly f-reflects to S. If \Diamond_X holds, then so does \Diamond_S .

Fact

Suppose V = L, then for all stationary sets $X, S \subseteq \kappa$, X f-reflects to S.

		_	
Miguel Moreno (UV)		YSTW 2	2022
Reflection of stationary sets and GDST		16 c	of 32

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

GDST 0000	Stationary Reflection	Filter Reflection 0000●	Forcing 000000	Reductions 000000000

► Usual stationary reflection is a special case of filter reflection.

Miguel Moreno (UV) Reflection of stationary sets and GDST '문▶' ★ 문▶

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000		0000●	000000	000000000

- Usual stationary reflection is a special case of filter reflection.
- ► For all regular cardinals $\gamma \leq \lambda < \kappa$, any $X \subseteq S_{\lambda}^{\kappa}$, X does not reflect at any $\alpha \in S_{\gamma}^{\kappa}$. S_{λ}^{κ} f-reflects to S_{γ}^{κ} is consistently true.

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000		0000●	000000	000000000

- Usual stationary reflection is a special case of filter reflection.
- For all regular cardinals γ ≤ λ < κ, any X ⊆ S^κ_λ, X does not reflect at any α ∈ S^κ_γ. S^κ_λ f-reflects to S^κ_γ is consistently true.
- If κ = λ⁺ and □_λ holds, then for all X ⊆ κ there is a stationary Y ⊆ X such that Y does not reflect at any α < κ.
 Fake reflection is consistent with □_λ.

イロト イボト イヨト イヨ

GDST 0000	Stationary Reflection	Filter Reflection 0000●	Forcing 000000	Reductions

- Usual stationary reflection is a special case of filter reflection.
- For all regular cardinals γ ≤ λ < κ, any X ⊆ S^κ_λ, X does not reflect at any α ∈ S^κ_γ. S^κ_λ f-reflects to S^κ_γ is consistently true.
- If κ = λ⁺ and □_λ holds, then for all X ⊆ κ there is a stationary Y ⊆ X such that Y does not reflect at any α < κ.
 Fake reflection is consistent with □_λ.
- ► Fake reflection does not require large cardinals.

イロト イボト イヨト イヨト

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000	000000	00000	●00000	000000000

Killing Filter Reflection

Theorem

There exists a cofinality-preserving forcing extension in which, for all stationary subsets X, S of κ , X does not f-reflect to S

Miguel Moreno (UV) Reflection of stationary sets and GDST YSTW 2022 18 of 32

GDST 0000	Stationary Reflection	Filter Reflection	Forcing ●00000	Reductions 000000000

Killing Filter Reflection

Theorem

There exists a cofinality-preserving forcing extension in which, for all stationary subsets X, S of κ , X does not f-reflect to S

Force a coherent regressive C-sequence, then force with $Add(\kappa,\kappa^+)$.

Miguel Moreno (UV) Reflection of stationary sets and GDST < 17 >

< ∃ >

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
			00000	

Forcing Filter Reflection

Theorem

For all stationary subsets X and S of κ , there exists a $<\kappa$ -closed κ^+ -cc forcing extension, in which X f-reflects to S.

< (T) >

э.

YSTW 2022

19 of 32

Miguel Moreno (UV) Reflection of stationary sets and GDST

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
			00000	

Forcing Filter Reflection

Theorem

For all stationary subsets X and S of κ , there exists a $<\kappa$ -closed κ^+ -cc forcing extension, in which X f-reflects to S.

Force with Sakai's forcing

Miguel Moreno (UV) Reflection of stationary sets and GDST YSTW 2022 19 of 32

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
			00000	

Stationary Reflection

Theorem

If κ is strongly inaccessible, then in the forcing extension by $Add(\kappa, \kappa^+)$, for all two disjoint stationary subsets X, S of κ , the following are equivalent:

- 1. X f-reflects to S;
- 2. every stationary subset of X reflects in S.

< 17 >

★ ∃ >

GDST 0000	Stationary Reflection 000000	Filter Reflection	Forcing 000●00	Reductions

$$Add(\omega,\kappa)$$

Theorem

Suppose X f-reflects to S holds. Then $Add(\omega, \kappa)$ forces that X f-reflects to S.

Miguel Moreno (UV) Reflection of stationary sets and GDST イロト イヨト イヨト イヨト

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
			000000	

Preserving Filter Reflection

Definition

Let $\kappa = \lambda^+$. A notion of forcing \mathbb{Q} satisfies κ -stationary-cc if for every sequence $\langle q_{\delta} | \delta < \kappa \rangle$ of conditions in \mathbb{Q} there is a club $D \subseteq \kappa$ and a regressive map $h: D \cap E_{cof(\lambda)}^{\kappa} \to \kappa$ such that for all $\gamma, \delta \in dom(h)$, if $h(\gamma) = h(\delta)$ then q_{γ} and q_{δ} are comparable.

(日) (四) (日) (日) (日)

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
			000000	

Preserving Filter Reflection

Definition

Let $\kappa = \lambda^+$. A notion of forcing \mathbb{Q} satisfies κ -stationary-cc if for every sequence $\langle q_{\delta} | \delta < \kappa \rangle$ of conditions in \mathbb{Q} there is a club $D \subseteq \kappa$ and a regressive map $h : D \cap E_{cof(\lambda)}^{\kappa} \to \kappa$ such that for all $\gamma, \delta \in dom(h)$, if $h(\gamma) = h(\delta)$ then q_{γ} and q_{δ} are comparable.

Definition

We say that a sequence $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is θ -complete if the set $\{\alpha \in S \mid \mathcal{F}_{\alpha} \text{ is not } \theta$ -complete} is non-stationary.

イロト 不得 トイヨト イヨト

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
			000000	

Preserving Filter Reflection

Theorem

Suppose $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a θ -complete sequence. Suppose \mathbb{P} is a forcing notion with θ -cc and κ -stationary-cc, and $X \subseteq \kappa$ is a stationary set such that $X \not\in \mathcal{F}$ -reflects to S. Then \mathbb{P} forces that $X \not\in \mathfrak{f}$ -reflects to S.

GDST 0000	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions ●00000000

Equivalence Modulo a Filter

Definition

Let \mathcal{F} be a filter over α . For every $\theta \in [2, \kappa]$, the equivalence modulo \mathcal{F} , $\sim_{\mathcal{F}}^{\theta}$, over θ^{α} , is defined via

$$(\eta,\xi) \in \sim_{\mathcal{F}}^{\theta} \text{ iff } \{\beta < \alpha \mid \eta(\beta) = \xi(\beta)\} \in \mathcal{F}$$

Miguel Moreno (UV) Reflection of stationary sets and GDST YSTW 2022 24 of 32

イロト イヨト イヨト イヨト

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
0000	000000	00000	000000	00000000

Equivalence Modulo a Filter

Definition

Let \mathcal{F} be a filter over α . For every $\theta \in [2, \kappa]$, the equivalence modulo \mathcal{F} , $\sim_{\mathcal{F}}^{\theta}$, over θ^{α} , is defined via

$$(\eta,\xi) \in \sim_{\mathcal{F}}^{\theta} \text{ iff } \{\beta < \alpha \mid \eta(\beta) = \xi(\beta)\} \in \mathcal{F}$$

Definition

For every $\theta, \gamma \in [2, \kappa]$, $F : \theta^{\kappa} \to \gamma^{\kappa}$, and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ a sequence of filters. We say that F captures $\vec{\mathcal{F}}$ if for all $\alpha \in S$ and $\eta, \xi \in \theta^{\kappa}$

$$\eta \upharpoonright \alpha \sim_{\mathcal{F}_{\alpha}}^{\theta} \xi \upharpoonright \alpha \text{ iff } F(\eta)(\alpha) = F(\xi)(\alpha).$$

Miguel Moreno (UV) Reflection of stationary sets and GDST イロト イポト イヨト イヨト

Characterization of Filter Reflection

Theorem

Let $X, S \subseteq \kappa$ be stationary sets. The following are equivalent:

- 1. X f-reflects to S.
- 2. There is $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ and $F : 2^{\kappa} \to \kappa^{\kappa}$ a reduction from $=_{X}^{2}$ to $=_{S}^{\kappa}$ that captures $\vec{\mathcal{F}}$.

イロト イポト イヨト イヨト

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
				00000000

Characterization of Strong Filter Reflection

Theorem

Let $X, S \subseteq \kappa$ be stationary sets. The following are equivalent.

- 1. X strongly \mathfrak{f} -reflects to S.
- There is a reduction F : 2^κ → 2^κ from =²_X to =²_S such that for all α ∈ S the set

$$\{\eta \upharpoonright_{\alpha}^{-1} [\gamma] \mid \eta \in 2^{\kappa} \& F(\eta)(\alpha) = \gamma\}$$

is a filter.

イロト イボト イヨト イヨ

GDST 0000	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions 000●00000

Reductions from Filter Reflection

Lemma

Mig Ref If X strongly f-reflects to S, then for all $\theta \in [2, \kappa]$, $=_X^{\theta} \hookrightarrow_c =_S^{\theta}$.

;uel Moreno (UV)	YSTW 2022
lection of stationary sets and GDST	27 of 32

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
				000000000

Reductions from Filter Reflection

Lemma

If X strongly f-reflects to S, then for all $\theta \in [2, \kappa]$, $=_X^{\theta} \hookrightarrow_c =_S^{\theta}$.

Theorem

Migu Refle Let $X, S \subseteq \kappa$ be stationary sets. If X f-reflects with \Diamond to S, then

$$\leq^X \hookrightarrow_c \subseteq^S$$
.

el Moreno (UV)	YSTW 2022
tion of stationary sets and GDST	27 of 32

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

GDST 0000	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions 0000●0000

The Main Gap

Theorem

Let $\kappa = \lambda^+$. If $cof(\omega)$ f-reflects with \diamond to $cof(\omega)$ and $cof(\lambda)$ f-reflects with \diamond to $cof(\lambda)$, then the isomorphism relation of any classifiable theory is continuous reducible to the isomorphism relation of any non-classifiable theory.

< (T) >

GDST 0000	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions 00000●000

The Main Gap

Theorem

Let $\kappa = \lambda^+$ and $X \subseteq \kappa$ a stationary set such that $X \cap cof(\lambda) = \emptyset$. If X strongly \mathfrak{f} -reflects to $cof(\lambda)$, then the isomorphism relation of any classifiable theory is continuous reducible to the isomorphism relation of any non-classifiable theory.

< (T) >

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
				000000000

Martin Maximum

Theorem

Suppose Martin's Maximum holds, $\kappa > \omega_2$, $X \subseteq cof(\omega)$ a stationary set and $S \subseteq cof(\omega_1)$. If \Diamond_X holds, then X reflects with \Diamond to S.

< (T) >

GDST	Stationary Reflection	Filter Reflection	Forcing	Reductions
				000000000

Martin Maximum

Theorem

Suppose Martin's Maximum holds, $\kappa > \omega_2$, $X \subseteq cof(\omega)$ a stationary set and $S \subseteq cof(\omega_1)$. If \Diamond_X holds, then X reflects with \Diamond to S.

MM implies that for $\kappa=\lambda^+,\,\lambda$ a singular strong limit of uncountable cofinality, it holds

$$=^{\kappa}_{\omega} \hookrightarrow_{c} =^{2}_{\omega_{1}}.$$

	・ロト ・四ト ・ヨト ・ヨト	₩	900
guel Moreno (UV)		YSTW	2022
flection of stationary sets and GDST		30	of 32

GDST 0000	Stationary Reflection	Filter Reflection	Forcing 000000	Reductions 0000000●0

Remains Open

Is the following consistently true? For all $S \subseteq \kappa$ stationary,

$$=^{\kappa}_{S} \not\hookrightarrow_{c} =^{2}_{S}.$$

Image: Image:

YSTW 2022

31 of 32

Miguel Moreno (UV) Reflection of stationary sets and GDST

GDST 0000	Stationary Reflection 000000	Filter Reflection	Forcing 000000	Reductions

Thank you

 Miguel Moreno (UV)
 YSTW 2022

 Reflection of stationary sets and GDST
 32 of 32

< ロ > < 回 > < 回 > < 回 > < 回 >

æ