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Well-known puzzle

23rd All-Russian Mathematical Olympiad (1997), Final Round, Grade 9:

A test of the Council of Sages is performed in the following way:
The king arranges the sages in a line and puts a white or black hat
on everyone’s head. Every sage can see the hats of all sages that are
in front of him, but can’t see the hat of anybody behind himself, nor
his own hat. Then each of the sages, one by one, guess the color of
his own hat. The king punishes all sages who make a wrong guess.
Before the test, the sages met and devised a way to reduce the
number of those who will be punished to a minimum. How many of
them can avoid the punishment?

(Proposed by Konstantin Knop)

Soon became practically a matter of folklore (assuming that this is indeed
the first appearance), often also in the version with prisoners and the
warden instead of sages and the king (which will be the terminology
adopted on further slides).

Strategy that saves all of them but eventually one: the last in line says
“white” or “black” depending on the parity of the number of black hats
he sees in front of him. Then everybody else can deduce (based on this
answer and all the other answers he hears before his turn) his color.
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An infinite version

What if there are infinitely many prisoners? (Gabay &
O’Connor, 2004)

The following strategy ensures that all of them with the
exception of finitely many will guess correctly:

Define the equivalence relation ∼ on ω2 by x ∼ y iff x and y
differ in only finitely many values. (The colors are 0 and 1.)
Pick one representative from each equivalence class.
By the hats he sees, each prisoner can deduce the class to
which the arrangement of hats belongs to, and he makes his
guess to match the chosen representative of that class.

Remarks:

The strategy works even if all the prisoners are deaf (as
nobody’s guess depends on what happened before him).
The strategy works with any number of colors (not necessarily
finite, not necessarily countable).
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Raising the limits of the possible

Is it possible to do even better? Yes!

There exists a strategy that ensures that all of them but
eventually one will guess correctly:

We define ∼ and pick one representative from each class in the
same way.
For each possible arrangement from ω2, label it 0 if it differs
from the representative of its equivalence class in an even
number of values, and label it 1 otherwise.
The first prisoner announces the label of the arrangement he
sees (ignoring his own hat),
Then every further prisoner has a choice between two
possibilities, which have different labels. As he knows the
correct label, he can deduce his color.

Also can be adapted to work with any number of colors.
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Is AC really necessary

(at least for this problem)?

Theorem (Hardin & Taylor, 2008)

It is consistent with ZF that, for every possible strategy, there
exists an arrangement of hats from ω2 for which the number of
prisoners guessing incorrectly is infinite.
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Somewhat less well-known puzzle

Problem

A warden in a prison takes 3 prisoners to the yard and puts a hat
on each of them. Each hat has an integer number written on it.
The prisoners have to choose a finite set of integers, independently
of each other, so that a set chosen by at least one them contains
the number from that prisoner’s hat. Can they achieve the goal?

Solution: each prisoner picks the range between the two
numbers he sees.
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Slight modification

Problem

A warden in a prison takes 3 prisoners to the yard and puts a hat
on each of them. Each hat has a real number written on it. The
prisoners have to choose a finite set of reals, independently of each
other, so that a set chosen by at least one them contains the
number from that prisoner’s hat. Can they achieve the goal?

Theorem

A strategy exists if and only if CH holds.
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CH ⇒ a strategy exists

Instead of R, we assume that the hats contain elements of ω1.

W.l.o.g.: the ordinals on the hats are all different.

For each ξ ∈ ω1, we fix a bijection fξ : ξ → ω.

For ξ1, ξ2 ∈ ω1, with ξ1 < ξ2, a prisoner who sees ξ1 and ξ2
should choose

f −1
ξ2

[
[0, fξ2(ξ1)]

]
.

Each such set is finite as fξ2(ξ1) ∈ ω.

Let the hats contain α, β and γ, where γ is the largest one
among them.

The prisoners with α and β choose f −1
γ

[
[0, fγ(β)]

]
and

f −1
γ

[
[0, fγ(α)]

]
, respectively.

If fγ(α) < fγ(β), then fγ(α) ∈ [0, fγ(β)], which means that
the prisoner with α will fulfill the aim. Otherwise, it is
analogous for the prisoner with β.
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B. Bašić Prisoners and hats and sets 8/ 10



CH ⇒ a strategy exists

Instead of R, we assume that the hats contain elements of ω1.

W.l.o.g.: the ordinals on the hats are all different.

For each ξ ∈ ω1, we fix a bijection fξ : ξ → ω.

For ξ1, ξ2 ∈ ω1, with ξ1 < ξ2, a prisoner who sees ξ1 and ξ2
should choose

f −1
ξ2

[
[0, fξ2(ξ1)]

]
.

Each such set is finite as fξ2(ξ1) ∈ ω.

Let the hats contain α, β and γ, where γ is the largest one
among them.

The prisoners with α and β choose f −1
γ

[
[0, fγ(β)]

]
and

f −1
γ

[
[0, fγ(α)]

]
, respectively.

If fγ(α) < fγ(β), then fγ(α) ∈ [0, fγ(β)], which means that
the prisoner with α will fulfill the aim. Otherwise, it is
analogous for the prisoner with β.
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¬CH ⇒ a strategy does not exist

Suppose the contrary: a strategy exists.

Let S be such that, for r1, r2 ∈ R, the function S(r1, r2) gives the (finite)
set of reals that a prisoner who sees r1 and r2 should choose.

Choose any A ⊂ R such that ℵ0 < |A| < c and ω ⊂ A.

Let A′ =
⋃

a1,a2∈A S(a1, a2).

As every S(·, ·) is finite, we have |A′| ⩽ |A| < c.

Therefore, we can choose x ∈ R \ A′.

For n ∈ ω, let:
Bn = {a ∈ A : n /∈ S(a, x)}.

We claim: Bn ⊆ S(n, x) for each n.

Let a ∈ Bn. Consider the game with n, a and x .
We have x /∈ S(n, a) (by the choice of x) and n /∈ S(a, x) (as a ∈ Bn).
As their strategy works ⇒ a ∈ S(n, x).

Therefore, |Bn| < ℵ0, and |
⋃

n∈ω Bn| ⩽ ℵ0 .

Thus we can find t ∈ A \
⋃

n∈ω Bn.

This gives n ∈ S(t, x) for all n ∈ ω, contradiction!
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B. Bašić Prisoners and hats and sets 9/ 10



¬CH ⇒ a strategy does not exist

Suppose the contrary: a strategy exists.

Let S be such that, for r1, r2 ∈ R, the function S(r1, r2) gives the (finite)
set of reals that a prisoner who sees r1 and r2 should choose.

Choose any A ⊂ R such that ℵ0 < |A| < c and ω ⊂ A.

Let A′ =
⋃

a1,a2∈A S(a1, a2).

As every S(·, ·) is finite, we have |A′| ⩽ |A| < c.

Therefore, we can choose x ∈ R \ A′.

For n ∈ ω, let:
Bn = {a ∈ A : n /∈ S(a, x)}.

We claim: Bn ⊆ S(n, x) for each n.

Let a ∈ Bn. Consider the game with n, a and x .
We have x /∈ S(n, a) (by the choice of x) and n /∈ S(a, x) (as a ∈ Bn).
As their strategy works ⇒ a ∈ S(n, x).

Therefore, |Bn| < ℵ0, and |
⋃

n∈ω Bn| ⩽ ℵ0 .

Thus we can find t ∈ A \
⋃

n∈ω Bn.

This gives n ∈ S(t, x) for all n ∈ ω, contradiction!
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Some generalizations

If the size of the allowed choice sets is infinite:

Let κ be an infinite cardinal. If the hats contain elements of
some set of cardinality κ+, while each prisoner is allowed to
choose set of cardinality κ, then a strategy always exists.
However, if the hats contain elements of some set of
cardinality λ where λ > κ+, then a strategy does not exist.

If there are more prisoners:

If there are n prisoners (where each is allowed to choose a
finite set), with n ⩾ 2, they have a strategy whenever the hats
contain elements of some set of cardinality ℵn−2.
Similarly, if each prisoner is allowed to choose an infinite set of
cardinality κ, they have a strategy whenever the hats contain
elements of some set of cardinality κ+(n−1).

. . .
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