
Failure of an higher analogue of Mho

Novi-Sad conference
In Set theory and general topology

Ido Feldman, Bar-Ilan University

22/8/2024

1 / 23



Outline

Background

Describing an iterand

Repeating to catch our tail

2 / 23



Moore’s axiom mho

Definition (℧)
There is a sequence 〈hδ : δ → ω | δ < ω1〉 such that for all δ < ω1,
hδ is a continuous map from δ into ω such that, for every club
E ⊆ ω1 there is δ ∈ E such that hδ[E ] = ω.
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E ⊆ ω1 there is δ ∈ E such that hδ[E ] = ω.

Remark
Continuity here means that there exists an ω-cofinal subset Cδ ⊆ δ
such that hδ(α) = hδ(min(Cδ \ α)) for every α < δ.

Motivation
In [Moo08] Moore proved that this very weak club-guessing
principle gives rise to an Aronszajn line with no Countryman
suborder.
This is in contrast with his theorem that PFA implies that the class
of Aronszajn lines admits a basis consisting of a Countryman line
C and its dual C∗.
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A generalization

Hereby we consider a natural generalization of Moore’s principle ℧.

Definition
For a stationary subset S of a regular uncountable cardinal κ, and
for a cardinal θ < κ, ℧(S , θ) asserts the existence of a sequence
〈(hδ,Cδ) | δ ∈ S〉 such that:

◮ For every δ ∈ S , hδ is a function from δ to θ;
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for a cardinal θ < κ, ℧(S , θ) asserts the existence of a sequence
〈(hδ,Cδ) | δ ∈ S〉 such that:

◮ For every δ ∈ S , hδ is a function from δ to θ;

◮ For every δ ∈ S , Cδ is a club in δ of order-type cf(δ), and for
every α < δ, hδ(α) = hδ(min(Cδ \ α));

◮ For every cofinal A ⊆ κ, there is a δ ∈ S such that for every
τ < θ,

sup{α ∈ A ∩ δ | min(Cδ \ α) ∈ S & hδ(α) = τ} = δ.

Note that ℧(ω1,ω) coincides with ℧.
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Moving one cardinal up

Question
Concentrating on S2

1 := {δ < ω2 | cf(δ) = ω1}, for what θ < ω2 do
℧(S2

1 , θ) hold?
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1 := {δ < ω2 | cf(δ) = ω1}, for what θ < ω2 do
℧(S2

1 , θ) hold?

Theorem (Shelah, 2003)

℧(S2
1 ,ω) holds outright in ZFC.

Theorem (Inamdar and Rinot, 2024)

If non(M) = ℵ1 or if |• holds, then so does ℧(S2
1 ,ω1).

Theorem (F., 2024)

Assuming the consistency of a supercompact cardinal and an
inaccessible cardinal above it, it is consistent that ℧(S2

1 ,ω1) fails.
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The framework

In order to accomplish our goal, we start with κ a supercompact
cardinal and λ some inaccessible above it.

We devise a finite support ‘iteration’ 〈Oα | α < λ〉 Using virtual
models of two-types (countable and uncountable) which will allow
us to show Oα is proper and κ-proper. In the final model, ℵ1 will
be preserved and κ will become the new ℵ2.
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We devise a finite support ‘iteration’ 〈Oα | α < λ〉 Using virtual
models of two-types (countable and uncountable) which will allow
us to show Oα is proper and κ-proper. In the final model, ℵ1 will
be preserved and κ will become the new ℵ2.

As the iteration has finite support, Oα will be λ-c.c., λ will remain
a cardinal — it will become the new ℵ3.
Though the finiteness plays a more crucial role.

Moreover, of course at stage α given a candidate for ℧(S2
1 ,ω1),

forcing with Oα should eliminate such candidate.
Thus, let us first describe what kind of typical candidates we
should consider.
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Description of a candidate

A candidate for ℧(S2
1 ,ω1) is a sequence 〈(hδ,Cδ) | δ ∈ S2

1 〉 such
that for every δ ∈ S2

1 :

◮ Cδ is a club in δ of order-type ω1;

◮ hδ is a map from δ to ω1;

◮ for every β < δ, hδ(β) = hδ(min(Cδ \ β));
◮ for every β ∈ nacc(Cδ) \ S2

1 , hδ(β) = 0.
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1 ,ω1) is a sequence 〈(hδ,Cδ) | δ ∈ S2

1 〉 such
that for every δ ∈ S2

1 :

◮ Cδ is a club in δ of order-type ω1;

◮ hδ is a map from δ to ω1;

◮ for every β < δ, hδ(β) = hδ(min(Cδ \ β));
◮ for every β ∈ nacc(Cδ) \ S2

1 , hδ(β) = 0.

Note that we may also assume the following:

◮ min(Cδ) = 0 for every δ ∈ S2
1 ;

◮ if δ ∈ acc+(S2
1 ), then nacc(Cδ) ⊆ {0} ∪ S2

1 .

Remark. nacc stands for non-accumulation points
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The task ahead

Our task splits into three main parts:

1. Finding a definition for an iterand Oα that annihilates a given
candidate 〈(hαδ ,Cα

δ ) | δ ∈ S2
1 〉;
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candidate 〈(hαδ ,Cα

δ ) | δ ∈ S2
1 〉;

2. Securing (two types of) properness of Oα;
i.e. for every M ≺ Hχ for large enough cardinal χ, given
p ∈ M ∩Oα and a dense set D, there exist pM ≤ p such that
any p′ ≤ pM, there exists q ∈ D ∩M such that q, p′ are
compatible.

3. Repeating the process to take care of all candidates.
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The iternad

Let S := S2
1 and θ := ω1.

Remember if θ = ω we are destined to fail.
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potential witness 〈(hδ,Cδ) | δ ∈ S〉 of ℧(S , θ).

The forcing O consists of conditions p := 〈τδ,p | δ ∈ Dp ∩ S2
1 〉 such

that the following hold:

(1) Dp is a subset of S2
1 ∪ S2

0 ;

(2) For every δ ∈ Dp of cof ω1, hδ[∆1(Dp)] ∩ {τδ} = ∅.
where ∆1(Dp) := Dp ∩ S2

1 .

τδ plays the role of the prohibited color. Therefore once we add it
by some condition, we must respect it. Thus, we assert p ≤ q iff:

◮ Dp ⊇ Dq;

◮ For all δ ∈ ∆1(Dq), τδ,q = τδ,p.
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Properness
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Properness

Unsurprisingly, there is no reason for the poset to be proper. More-
over, for an O-generic G the set DG :=

󰁖
p∈G Dp might not be

closed. Therefore, one must add protections to ensure properness
and closeness.
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Unsurprisingly, there is no reason for the poset to be proper. More-
over, for an O-generic G the set DG :=

󰁖
p∈G Dp might not be

closed. Therefore, one must add protections to ensure properness
and closeness.

Since we are interested in not collapsing three cardinals, we use
two kinds of models as side condition, this was introduced by I.
Neeman in [Nee14], based on an idea of Todorc̆ević in [Tc85] to
add elementary models as side conditions to ensure properness.

In the same paper, Neeman found a way to make the generic set of
the models closed. This was done by adding a “decoration” to each
model.
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Using two-type of models as side conditions

Up to this point, our forcing O should consist of conditions
p := 〈Mp, dp, 〈τδ,p | δ ∈ ∆1(Dp)〉〉 where:
(1) Mp is a finite ∈-chain of two-types of models;
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(1) Mp is a finite ∈-chain of two-types of models;

(2) dp is a decoration function from Mp to Vω2 ;
i.e. if N is the predecessor of M in Mp, then dp(N) ∈ M.

(3) Dp is a subset of ∆(Mp);
∆(Mp) := {δM | M ∈ Mp}, where δM := sup(M ∩ ω2).

(4) For every δ ∈ Dp of cof ω1, hδ[∆1(Dp)] ∩ {τδ} = ∅.
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The countable properness

To establish our iterand O is countably-proper, we are looking at
the following setup:
For some large enough cardinal χ, let M ≺ Hχ be countable with
O ∈ M. Let p be a condition with M ∩ Hω2 ∈ Mp and q ∈ D ∩M
for some dense set D ∈ M (which is extending some residue of p in
M).

13 / 23



The countable properness

To establish our iterand O is countably-proper, we are looking at
the following setup:
For some large enough cardinal χ, let M ≺ Hχ be countable with
O ∈ M. Let p be a condition with M ∩ Hω2 ∈ Mp and q ∈ D ∩M
for some dense set D ∈ M (which is extending some residue of p in
M). Our task is to find the right q, for whom p, q are compatible.

13 / 23



The countable properness

To establish our iterand O is countably-proper, we are looking at
the following setup:
For some large enough cardinal χ, let M ≺ Hχ be countable with
O ∈ M. Let p be a condition with M ∩ Hω2 ∈ Mp and q ∈ D ∩M
for some dense set D ∈ M (which is extending some residue of p in
M). Our task is to find the right q, for whom p, q are compatible.

But it raises the following obstructive configuration:
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Obstruction

Suppose q is such that,

max(∆1(Mq)) > max(∆1(Mp) ∩M)

In this case, For K ∈-above M, we have to assign a color τδK which
takes into consideration this extra elements in advance.
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The solution

We exploit the fact we have ω1 many available colors and there are
countably many possibilities for the choice of q.
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(5) For every uncountable K in Mp and countable M ∈-below K
of the right form for K in p, hδK [M] ∩ {τδK} = ∅.
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The solution

We exploit the fact we have ω1 many available colors and there are
countably many possibilities for the choice of q.

We add a fifth demand to the poset:

(5) For every uncountable K in Mp and countable M ∈-below K
of the right form for K in p, hδK [M] ∩ {τδK} = ∅.

Remark
We restrict ourselves to specific ‘of the right form’ models in order
to define the notion of a residue in a sound way. Of course the
definition of ‘right form’ also respects the structure of two-type
∈-chain of models.
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Uncountable properness

Now let us try to establish the uncountable properness. The setup
in this case is similar: Let χ be some large cardinal, M ≺ Hχ

uncountable with O ∈ M. Suppose condition p with
M ∩ Hω2 ∈ Mp and q ∈ D ∩M for some dense set D ∈ M ( which
is extending some residue of p in M).
Again our task is to find the right q, for whom p, q are compatible
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Uncountable properness

Now let us try to establish the uncountable properness. The setup
in this case is similar: Let χ be some large cardinal, M ≺ Hχ

uncountable with O ∈ M. Suppose condition p with
M ∩ Hω2 ∈ Mp and q ∈ D ∩M for some dense set D ∈ M ( which
is extending some residue of p in M).
Again our task is to find the right q, for whom p, q are compatible

Remark
Note that up to this point, our forcing was actually strongly proper.
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Same problem, but a ’cheaper’ price to pay

Once more we have the same difficulty as before! Fortunately this
time the solution is ‘cheaper’.
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Same problem, but a ’cheaper’ price to pay

Once more we have the same difficulty as before! Fortunately this
time the solution is ‘cheaper’.

Note that otp(CδM) = ω1. But for any club C ∈ M in ω2,

otp(C ∩M) = δM

which is strictly greater then ω1.
Thus, by choosing q more carefully, we get that ∆1(Mq) ∩ Cδ = ∅
for all δ ∈ ∆1(Dp) \M. So the forcing is not strongly
uncountably-proper, but merely uncountably-proper.
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One problem done, another arises
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Unfortunately, we again run into trouble since there is no way to
guarantee for example that:

hδM [P] ∩ {τδ} = ∅

for P ∈ Mq. Since δP can turn out to be arbitrary high below δM.
So, the amalgamation fails.
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One problem done, another arises

Unfortunately, we again run into trouble since there is no way to
guarantee for example that:

hδM [P] ∩ {τδ} = ∅

for P ∈ Mq. Since δP can turn out to be arbitrary high below δM.
So, the amalgamation fails.

The solution: Demand Clause (5) to be referred only when δP ∈
acc(CδM). In our case, as all δP ∈ ∆(Mq) \∆(Mp) are chosen to
be outside CδK for all δK ∈ ∆1(Mp), the situation described above
is successfully avoided.
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Appropriate conditions

Most importantly, going back to the countable-properness together
with our modified Clause (5), we are able to amalgamate by
choosing q which is appropriate for M in p.
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Appropriate conditions

Most importantly, going back to the countable-properness together
with our modified Clause (5), we are able to amalgamate by
choosing q which is appropriate for M in p.
We won’t go into the very definition of appropriate conditions, and
settle for their meaning which is described by the following lemma:

Lemma
In our context: if q is appropriate for M in p, then for any
uncountable K ∈ Mp and countable Q ∈ Mq such that Q /∈ Mp,
then one of the following holds:

◮ δQ /∈ acc(CδK);

◮ There exists P ∈ Mp which is ∈-above Q and δP ∈ acc(CδK).
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The iteration

Hereby let κ be supercompact and λ inaccessible above it.
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The iteration

Hereby let κ be supercompact and λ inaccessible above it.

We iteratively add a tower of λ many clubs in κ, eventually
collapsing κ to ℵ2, λ to ℵ3. Moreover, at each stage α we ensure
that a potential candidate for a witness to ℧(S2

1 ,ω1) is destroyed
by one of the clubs in our tower so far.

A condition in an ‘iterand’ of our forcing is a triple of finite sets
〈Mp, dp,Fp〉, where the pair 〈Mp, dp〉 is a condition in the
Velickovic-Mohammadpour poset from [MV21]. And Fp is a
variation of the working part of the iterand we have just described.
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