Concentrated sets and γ -sets in the Miller model Valentin Haberl TU Wien SETTOP 2024 August 20, 2024 ## Notation: - With a *space* we mean a subspace of reals. - A space is called *totally imperfect* if it contains no copy of the Cantor space 2^{ω} . - $\omega^{\uparrow \omega}$: the space of all stricly increasing functions from ω to ω . - $\omega^{\omega} \cong \omega^{\uparrow \omega} \cong [\omega]^{\omega}$. - $[\omega]^{<\omega}$ are the rationals. ## Miller model #### Definition $T \subseteq \omega^{<\omega}$ is a Miller tree if T is closed under initial segments; and for every $t \in T$ there is $s \supseteq t$ such that $s \cap n \in T$ for infinitely many $n \in \omega$. - Miller forcing: $\mathbb{M} = \{ T \subseteq \omega^{<\omega} : T \text{ is a Miller tree} \} \text{ with } \leq := \subseteq.$ - \mathbb{M}_{ω_2} : the countable support iteration (c.s.i.) of Miller forcing of length ω_2 . **Miller model:** Forcing with \mathbb{M}_{ω_2} over a model of CH. ## Concentrated sets and K-Lusin sets #### Definition $X\subseteq 2^{\omega}$ is *concentrated* on $A\subseteq 2^{\omega}$ with $|A|=\omega$ if for any open $U\supseteq A$: $|X \setminus U| \le \omega$. Moreover, we call X concentrated if $A \subseteq X$. $X \subseteq \omega^{\omega}$ is K-Lusin if $|X \cap K| \leq \omega$ for all compact sets $K \subseteq \omega^{\omega}$. #### Observation For $\kappa > \omega$, there is a concentrated set of size κ iff there is a K-Lusin set of size κ . # Selection Principles - An open cover is an ω -cover if X is not an element of it and every finite subset of X is contained in some element of the cover. - An open cover is a γ -cover if it is infinite and every point is in all but finitely many elements of the cover. O, Ω , Γ the families of all open covers, ω -covers, γ -covers of X ### Example Let $\mathcal{U}=\{A\subseteq\mathbb{R}:A\text{ is open, bounded and }\mu(A)<\frac{1}{\operatorname{diam}(A)}\}$, where μ is the Lebesgue measure. Then \mathcal{U} is an ω -cover, but has no subcover that is a γ -cover. **Menger spaces** ($S_{fin}(O, O)$): For every sequence $\langle U_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{ \cup \mathcal{V}_n : n \in \omega \}$ is an open cover of X. **Hurewicz spaces** ($U_{fin}(O, \Gamma)$): For every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X, i.e. for all $x \in X$: $|\{n \in \omega : x \notin \bigcup \mathcal{V}_n\}| < \omega.$ Rothberger spaces $(S_1(O, O))$: For each sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers there is a sequence $\langle U_n : n \in \omega \rangle$ such that $U_n \in \mathcal{U}_n$, and $\{ U_n : n \in \omega \}$ is an open cover of X. γ -sets (S₁(Ω , Γ)): For each sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of ω -covers there are sets $U_n \in \mathcal{U}_n$, $n \in \omega$, such that $\{U_n: n \in \omega\}$ is a γ -cover of X. # Scheepers diagram The Scheepers Diagram illustrating the connections among the selection principles, excluding trivial ones or those that are equivalent in ZFC. ## In the Miller model: ### Some properties: - $\mathfrak{c} = \mathfrak{d} = \omega_2$ - $\mathfrak{b} = \mathfrak{p} = \omega_1$ - u < g - ullet There are totally imperfect Menger subspaces of reals of size ${\mathfrak c}.$ - The ground-model reals are unbounded and the Miller reals are unbounded. # Theorem (Zdomskyy, 2005) In the Miller model, every Rothberger space is Hurewicz. # Conjecture (Bartoszyński, Halbeisen, 2003) In the Miller model, there are K-Lusin sets of size c. #### Our Goal: This is not only false for K-Lusin sets (equivalently concentrated sets), but for all the properties above. We have a partial realization, namely for Concentrated sets and γ -sets. # Forcing Combinatorics $$[f < g] := \{ n \in \omega : f(n) < g(n) \}.$$ #### Definition Let $h \in \omega^{\uparrow \omega}$. $f \in \omega^{\uparrow \omega}$ is *h-unbounded* over a set *N* if $\{ n \in \omega : [h(n), h(n+1)) \subseteq [x < f] \}$ infinite for all $x \in \omega^{\omega} \cap N$. #### Definition A poset $\mathbb P$ is *mild* if for elementary submodel $N\ni\mathbb P$ of $H(\theta)$ with sufficiently large θ , if $f\in\omega^{\uparrow\omega}$ is h-unbounded over N for some $h\in\omega^{\uparrow\omega}$, then for every $p\in\mathbb P\cap N$ there is an $(N,\mathbb P)$ -generic condition $q\le p$ such that $q \Vdash f$ is *h*-unbounded over $N[\Gamma]$. # Forcing Combinatorics #### Lemma If $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \delta \rangle$ is a c.s.i. of mild posets, then \mathbb{P}_{δ} is also mild. #### Lemma \mathbb{M}_{ω_2} is mild. ### Example Cohen forcing is mild and Laver forcing is not mild. # Forcing Combinatorics #### Lemma Let $\mathbb P$ be a mild poset and let G be a $\mathbb P$ -generic filter over V. If $x \in (\omega^\omega)^{V[G]}$, and $\psi : (\omega^{\uparrow \omega})^V \to (\omega^{\uparrow \omega})^V$ is a function which is an element of V, then there exists an element $f \in \omega^{\uparrow \omega} \cap V$ such that the set $$\{ n \in \omega : [\psi(f)(n), \psi(f)(n+1)) \subseteq [x < f] \}$$ is infinite. In particular, the above holds for \mathbb{M}_{ω_2} . #### Proof. Let \dot{x} be a name for x. We work in V: - Let $p \in \mathbb{P}$. - Pick an elementary submodel N such that $p, \dot{x} \in N$. - Fix $f \in \omega^{\uparrow \omega}$ such that $z <^* f$ for all $z \in \omega^{\omega} \cap N$. - f is $\psi(f)$ -unbounded over N. - Let $q \le p$ be an (N, \mathbb{P}) -generic condition with $q \Vdash f$ is $\psi(f)$ -unbounded over $N[\Gamma]$. - In particular, $q \Vdash \{ n \in \omega : [\psi(f)(n), \psi(f)(n+1)) \subseteq [\dot{x} < f] \}$ is infinite. ## Concentrated sets in the Miller model ## Theorem (H., Szewczak, Zdomskyy, 2023) In the Miller model, there is no K-Lusin set in $\omega^{\uparrow\omega}$ of size \mathfrak{c} . Equivalently, in this model there is no concentrated set of size \mathfrak{c} . ## Proof (Idea). Assume there is such X. Since Rothberger implies being Hurewicz, we can find $\psi: \omega^{\uparrow \omega} \to \omega^{\uparrow \omega}$ such that $[\psi(f)(n), \psi(f)(n+1)) \cap [x \ge f] \ne \emptyset$ for all but finitely many n if $x \nleq^* f$. By mildness (Lemma above) and an intermediate submodel argument, we can find a contradiction. ## Concentrated sets in the Miller model ### Lemma (Folklore) In the Miller model, there are concentrated sets of reals of size ω_1 . ### Proof. Since $\mathfrak{b}=\omega_1$, any \mathfrak{b} -scale $\{b_\beta:\beta<\mathfrak{b}\}$ is concentrated on a copy Q of the rationals. Hence $\{b_\beta:\beta<\mathfrak{b}\}\cup Q$ is concentrated. \Box # γ -sets in the Miller model Recall X is a γ -set if for every sequence of ω -covers $\langle \mathcal{U}_n : n \in \omega \rangle$ there exists a γ -cover $\{U_n :\in \omega\}$ with $U_n \in \mathcal{U}_n$. Theorem (Orenshtein, Tsaban, 2011) If $\mathfrak{p} = \mathfrak{b}$, then there is a γ -set of cardinality \mathfrak{p} . In particular, in the Miller model there are γ -sets of reals of size ω_1 . # Semifilters $S \subseteq [\omega]^{\omega}$ is a semifilter if: $\forall y \in S \ \forall x \in \mathcal{P}(\omega) \ (y \subseteq^* x \Rightarrow x \in S)$. If $\varphi : \omega \to \omega$ is a finite-to-one function, we denote $\varphi(S) := \{x \in \mathcal{P}(\omega) : \varphi^{-1}[x] \in S\} = \{x \in \mathcal{P}(\omega) : \exists y \in S(\varphi[y] \subseteq x)\}$. Note, a filter \mathcal{F} is a semifilter iff $\mathfrak{Fr} := \{x \in \mathcal{P}(\omega) : \omega \setminus x \text{ finite}\} \subseteq \mathcal{F}$. #### Definition The *semifilter trichotomy* is the statement that for every semifilter S exatly one of the following assertions holds: Fix an ultrafilter U. - There is a monotone increasing surjection $\varphi : \omega \to \omega$ such that $\varphi(S) = \mathfrak{Fr}$. - ② There is a monotone increasing surjection $\varphi : \omega \to \omega$ such that $\varphi(S) = \varphi(\mathcal{U})$. - **3** There is a monotone increasing surjection $\varphi:\omega\to\omega$ such that $\varphi(S)=[\omega]^\omega$. # Semifilter tools In the Miller model: $\omega_1 = \mathfrak{u} < \mathfrak{g} = \omega_2$. Theorem (Blass, Laflamme) The semifilter trichotomy holds iff $\mathfrak{u} < \mathfrak{g}$. #### Lemma In the Miller model, suppose that $X\supseteq [\omega]^{<\omega}$ is a γ -set. Then $X\setminus [\omega]^{<\omega}$ is bounded by ω_1 -many elements of $[\omega]^\omega$. # Weakly G_{ω_1} -concentrated R is G_{ω_1} if $R = \bigcap_{i < \omega_1} O_i$, with O_i open. *X* is called *weakly* G_{ω_1} -concentrated if: For every collection $\mathcal{C}\subseteq [X]^\omega$ which is cofinal with respect to inclusion, and for every $R:\mathcal{C}\to\mathcal{P}(X)$ assigning to each $Q\in\mathcal{C}$ a G_{ω_1} -set R(Q) containing Q, there exists $\mathcal{C}_1\in [\mathcal{C}]^{\omega_1}$ such that $X\subseteq \bigcup_{Q\in\mathcal{C}_1}R(Q)$. # Theorem (Zdomskyy, 2018) in the Miller model, each Menger subspace of $\mathcal{P}(\omega)$ is weakly G_{ω_1} -concentrated. In particular, the same holds for γ -sets. # γ -sets in the Miller model ### Theorem (H., Szewczak, Zdomskyy, 2024) In the Miller model, there are no γ -sets $X \subseteq \mathcal{P}(\omega)$ of size \mathfrak{c} . ### Proof (Idea). Let $\mathcal{C} \subseteq [X]^{\omega}$ be the collection of all dense countably infinite subsets of X. \mathcal{C} is clearly cofinal in $[X]^{\omega}$. By semifilter trichotomy and γ -set property: Any dense $Q \in [X]^{\omega}$ is a G_{ω_1} -set in X. - Take $R: \mathcal{C} \to \mathcal{P}(X)$ with R(Q) = Q. - $X \subseteq \bigcup_{Q \in \mathcal{C}_1} R(Q) = \bigcup_{Q \in \mathcal{C}_1} Q$ with $\mathcal{C}_1 \in [C]^{\omega_1}$. - Thus, $|X| \leq \omega_1$. # Open Problems #### **Problem** Is it consistent that there exists a set $X\subseteq [\omega]^\omega$ of size $|X|>\omega_1$ such that for every $f\in\omega^{\uparrow\omega}$ - X is K-Lusin and - there exists $\psi(f) \in \omega^{\uparrow \omega}$ such that for every $x \in X$, if $x \nleq^* f$, then $$[\psi(f)(n),\psi(f)(n+1))\cap[x\geq f]\neq\emptyset$$ for all but finitely many $n \in \omega$? #### **Problem** Is there, in the Miller model, - a Rothberger set $X \subseteq 2^{\omega}$ of size \mathfrak{c} ? - a totally imperfect Hurewicz set $X \subseteq 2^{\omega}$ of size \mathfrak{c} ? - a strong measure zero set $X \subseteq 2^{\omega}$ of size \mathfrak{c} ? Hvala na pažnji! Thank you for your attention!