Concentrated sets and γ -sets in the Miller model

Valentin Haberl

TU Wien

SETTOP 2024 August 20, 2024

Joint work with Piotr Szewczak and Lyubomyr Zdomskyy < \Box > < \Box > < \Box > < \Box > < \Box > ∴ ≊ 299

- With a *space* we mean a subspace of reals.
- A space is called *totally imperfect* if it contains no copy of the Cantor space 2^ω .
- $\omega^{\uparrow\omega}$: the space of all stricly increasing functions from ω to $\omega.$
- $\omega^{\omega} \cong \omega^{\uparrow \omega} \cong [\omega]^{\omega}.$
- $[\omega]^{<\omega}$ are the rationals.

 $\mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B}$

 QQQ

Miller model

Definition

 $T \subseteq \omega^{\leq \omega}$ is a Miller tree if T is closed under initial segments; and for every $t \in \mathcal{T}$ there is $s \supset t$ such that $s \supset n \in \mathcal{T}$ for infinitely many $n \in \omega$.

- Miller forcing: $\mathbb{M} = \{ T \subseteq \omega^{<\omega} : T \text{ is a Miller tree} \}$ with $\leq := \subseteq$.
- \mathbb{M}_{ω_2} : the countable support iteration (c.s.i.) of Miller forcing of length ω_2 .

Miller model: Forcing with \mathbb{M}_{ω_2} over a model of CH.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Concentrated sets and K-Lusin sets

Definition

 $X\subseteq 2^\omega$ is *concentrated* on $A\subseteq 2^\omega$ with $|A|=\omega$ if for any open $U\supseteq A$: $|X \setminus U| \leq \omega$. Moreover, we call X concentrated if $A \subseteq X$. $X\subseteq\omega^\omega$ is K -Lusin if $|X\cap K|\leq\omega$ for all compact sets $K\subseteq\omega^\omega$.

Observation

For $\kappa > \omega$, there is a concentrated set of size κ iff there is a K-Lusin set of size κ.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 200

Selection Principles

- An open cover is an ω -cover if X is not an element of it and every finite subset of X is contained in some element of the cover.
- An open cover is a γ -cover if it is infinite and every point is in all but finitely many elements of the cover.
- O, Ω , Γ the families of all open covers, $ω$ -covers, $γ$ -covers of X

Example

Let $\mathcal{U} = \set{A \subseteq \mathbb{R} : A \text{ is open, bounded and } \mu(A) < \frac{1}{\text{diam}}$ $\frac{1}{\text{diam}(\mathcal{A})}$ }, where μ is the Lebesgue measure. Then U is an ω -cover, but has no subcover that is a γ -cover.

Menger spaces (S_{fin}(O, O)): For every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle {\cal V}_n : n \in \omega \rangle$ such that ${\cal V}_n \in [{\cal U}_n]^{< \omega}$ and $\{\cup V_n : n \in \omega\}$ is an open cover of X. **Hurewicz spaces** $(U_{fin}(O, \Gamma))$: For every sequence $\langle U_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle {\cal V}_n : n \in \omega \rangle$ such that ${\cal V}_n \in [{\cal U}_n]^{< \omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X, i.e. for all $x \in X$: $|\{ n \in \omega : x \notin \bigcup \mathcal{V}_n \}| < \omega.$ Rothberger spaces $(S_1(0, 0))$: For each sequence $\langle U_n : n \in \omega \rangle$ of open covers there is a sequence $\langle U_n : n \in \omega \rangle$ such that $U_n \in \mathcal{U}_n$, and $\{ U_n : n \in \omega \}$ is an open cover of X. γ -sets $(S_1(\Omega,\Gamma))$: For each sequence $\langle U_n : n \in \omega \rangle$ of ω -covers there are sets $U_n \in \mathcal{U}_n$, $n \in \omega$, such that $\{U_n : n \in \omega\}$ is a γ -cover of X.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Scheepers diagram

The Scheepers Diagram illustrating the connections among the selection principles, excluding trivial ones or those that are equivalent in ZFC.

€ □ E

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

 QQ

э

In the Miller model:

Some properties:

- $\mathfrak{o} \mathfrak{c} = \mathfrak{d} = \omega_2$
- $\bullet \; \mathfrak{b} = \mathfrak{p} = \omega_1$
- $\bullet u < a$
- There are totally imperfect Menger subspaces of reals of size c.
- The ground-model reals are unbounded and the Miller reals are unbounded.

Theorem (Zdomskyy, 2005)

In the Miller model, every Rothberger space is Hurewicz.

- 4 重 8 - 4 重 8

Our Goal:

This is not only false for K-Lusin sets (equivalently concentrated sets), but for all the properties above. We have a partial realization, namely for Concentrated sets and γ -sets.

Forcing Combinatorics

$$
[f < g] := \{ n \in \omega : f(n) < g(n) \}.
$$

Definition

Let $h \in \omega^{\uparrow \omega}$. $f\in\omega^{\uparrow\omega}$ is *h-unbounded* over a set N if $\{ n \in \omega : [h(n), h(n+1)) \subseteq [x < f] \}$ infinite for all $x \in \omega^{\omega} \cap N$.

Definition

A poset $\mathbb P$ is *mild* if for elementary submodel $N \ni \mathbb P$ of $H(\theta)$ with sufficiently large θ , if $f\in\omega^{\uparrow\omega}$ is h -unbounded over N for some $h\in\omega^{\uparrow\omega},$ then for every $p \in \mathbb{P} \cap N$ there is an (N, \mathbb{P}) -generic condition $q \leq p$ such that

 $q \Vdash f$ is *h*-unbounded over $N[\Gamma]$.

イロト イ押 トイヨ トイヨト

 QQ

- 3

Forcing Combinatorics

Lemma

If $\langle \mathbb P_\alpha, \dot{\mathbb Q}_\alpha : \alpha < \delta \rangle$ is a c.s.i. of mild posets, then $\mathbb P_\delta$ is also mild.

Lemma

 \mathbb{M}_{ω_2} is mild.

Example

Cohen forcing is mild and Laver forcing is not mild.

 $A \oplus A \times A \oplus A \times A \oplus A$

4 **E** F

目

Forcing Combinatorics

Lemma

Let $\mathbb P$ be a mild poset and let G be a $\mathbb P$ -generic filter over V. If $x\in (\omega^\omega)^{V[G]}$, and $\psi: (\omega^{\uparrow\omega})^V\to (\omega^{\uparrow\omega})^V$ is a function which is an element of V, then there exists an element $f\in\omega^{\uparrow\omega}\cap V$ such that the set

$$
\{ n \in \omega : [\psi(f)(n), \psi(f)(n+1)) \subseteq [x < f] \}
$$

is infinite.

In particular, the above holds for \mathbb{M}_{ω_2} .

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Proof.

Let \dot{x} be a name for x . We work in V :

- Let $p \in \mathbb{P}$.
- Pick an elementary submodel N such that $p, \dot{x} \in N$.
- Fix $f \in \omega^{\uparrow \omega}$ such that $z <^* f$ for all $z \in \omega^\omega \cap N$.
- f is $\psi(f)$ -unbounded over N.
- Let $q \leq p$ be an (N, \mathbb{P}) -generic condition with $q \Vdash f$ is $\psi(f)$ -unbounded over $N[\Gamma]$.
- In particular, $q \Vdash \{ n \in \omega : [\psi(f)(n), \psi(f)(n+1)) \subseteq [x < f] \}$ is infinite.

 QQ

- 4 重 8 - 4 重 8

Concentrated sets in the Miller model

Theorem (H., Szewczak, Zdomskyy, 2023)

In the Miller model, there is no K-Lusin set in $\omega^{\uparrow\omega}$ of size c. Equivalently, in this model there is no concentrated set of size c.

Proof (Idea).

Assume there is such X . Since Rothberger implies being Hurewicz, we can find $\psi:\omega^{\uparrow\omega}\to\omega^{\uparrow\omega}$ such that $[\psi(f)(n),\psi(f)(n+1))\cap[x\geq f]\neq\emptyset$ for all but finitely many *n* if $x \nleq^* f$. By mildness (Lemma above) and an intermediate submodel argument, we

can find a contradiction.

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

Concentrated sets in the Miller model

Lemma (Folklore)

In the Miller model, there are concentrated sets of reals of size ω_1 .

Proof.

Since $\mathfrak{b} = \omega_1$, any \mathfrak{b} -scale $\{b_\beta : \beta < \mathfrak{b}\}\$ is concentrated on a copy Q of the rationals. Hence ${b_{\beta} : \beta < b} \cup Q$ is concentrated.

化重新润滑脂

 γ -sets in the Miller model

Recall X is a γ -set if for every sequence of ω -covers $\langle \mathcal{U}_n : n \in \omega \rangle$ there exists a γ -cover $\{U_n : \in \omega\}$ with $U_n \in \mathcal{U}_n$.

Theorem (Orenshtein, Tsaban, 2011)

If $p = b$, then there is a γ -set of cardinality p.

In particular, in the Miller model there are γ -sets of reals of size ω_1 .

化重新润滑脂

Semifilters

 $\mathcal{S}\subseteq [\omega]^\omega$ is a *semifilter* if: $\forall y\in\mathcal{S}\ \forall x\in\mathcal{P}(\omega)$ $(y\subseteq^* x\Rightarrow x\in\mathcal{S}).$ If $\varphi : \omega \to \omega$ is a finite-to-one function, we denote $\varphi(S) := \{ \, x \in \mathcal{P}(\omega) : \varphi^{-1}[x] \in S \, \} = \{ \, x \in \mathcal{P}(\omega) : \exists \, y \in S(\varphi[y] \subseteq x) \, \}.$ Note, a filter F is a semifilter iff $\mathfrak{F} \mathfrak{r} := \{x \in \mathcal{P}(\omega) : \omega \setminus x \text{ finite}\} \subseteq \mathcal{F}$.

Definition

The semifilter trichotomy is the statement that for every semifilter S exatly one of the following assertions holds: Fix an ultrafilter U .

- **1** There is a monotone increasing surjection $\varphi : \omega \to \omega$ such that $\varphi(S) = \mathfrak{F} \mathfrak{r}.$
- **2** There is a monotone increasing surjection $\varphi : \omega \to \omega$ such that $\varphi(S) = \varphi(\mathcal{U}).$

3 There is a monotone increasing surjection $\varphi : \omega \to \omega$ such that $\varphi(S) = [\omega]^{\omega}$.

Semifilter tools

In the Miller model: $\omega_1 = \mathfrak{u} < \mathfrak{g} = \omega_2$.

Theorem (Blass, Laflamme)

The semifilter trichotomy holds iff $u < \mathfrak{g}$.

Lemma

In the Miller model, suppose that $X \supseteq [\omega]^{<\omega}$ is a γ -set. Then $X \setminus [\omega]^{<\omega}$ is bounded by ω_1 -many elements of $[\omega]^\omega$.

 $\left\{ \left. \left. \left(\mathsf{H} \right) \right| \times \left(\mathsf{H} \right) \right| \times \left(\mathsf{H} \right) \right\}$

Weakly $\mathsf{G}_{\omega_1}\text{-concentrated}$

R is G_{ω_1} if $R = \bigcap_{i<\omega_1} O_i$, with O_i open. X is called *weakly* G_{ω_1} *-concentrated* if: For every collection $\mathcal{C} \subseteq [X]^\omega$ which is cofinal with respect to inclusion, and for every $R:\mathcal{C}\to\mathcal{P}(X)$ assigning to each $Q\in\mathcal{C}$ a \mathcal{G}_{ω_1} -set $R(Q)$ containing Q , there exists $\mathcal{C}_1\in [\mathcal{C}]^{\omega_1}$ such that $X\subseteq \bigcup_{Q\in\mathcal{C}_1} R(Q).$

Theorem (Zdomskyy, 2018)

in the Miller model, each Menger subspace of $\mathcal{P}(\omega)$ is weakly G_{ω_1} -concentrated.

In particular, the same holds for γ -sets.

CONVERTED A BY A DI

γ -sets in the Miller model

Theorem (H., Szewczak, Zdomskyy, 2024) In the Miller model, there are no γ -sets $X \subseteq \mathcal{P}(\omega)$ of size c.

Proof (Idea).

Let $\mathcal{C} \subseteq [X]^\omega$ be the collection of all dense countably infinite subsets of $X.$ $\mathcal C$ is clearly cofinal in $[X]^\omega$.

By semifilter trichotomy and γ -set property: Any dense $Q \in [X]^\omega$ is a G_{ω_1} -set in X.

• Take
$$
R: C \to P(X)
$$
 with $R(Q) = Q$.

•
$$
X \subseteq \bigcup_{Q \in C_1} R(Q) = \bigcup_{Q \in C_1} Q
$$
 with $C_1 \in [C]^{\omega_1}$.

• Thus, $|X| < \omega_1$.

Open Problems

Problem

Is it consistent that there exists a set $X\subseteq [\omega]^\omega$ of size $|X|>\omega_1$ such that for every $f\in\omega^{\uparrow\omega}$

- \bullet X is K-Lusin and
- there exists $\psi(f)\in\omega^{\uparrow\omega}$ such that for every $x\in X$, if $x\not\leq^*f$, then

 $[\psi(f)(n), \psi(f)(n+1)) \cap [x \geq f] \neq \emptyset$

for all but finitely many $n \in \omega$?

化重新润滑脂

Hvala na pažnji!

Thank you for your attention!

Valentin Haberl (TU Wien) Concentrated sets and γ-sets in the Miller mGETTOP 2024 August 20, 2024 23/23

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁

重

 298