An ordinal rank measuring universality

Wiesław Kubiś

Institute of Mathematics, CAS, Prague, Czechia

—– Cardinal Stefan Wyszy´nski University in Warsaw, Poland

SETTOP 19 – 22 August 2024, Novi Sad, Serbia

Joint work (in progress) with S. Shelah

Joint work (in progress) with S. Shelah

Main task

Study a natural rank on models or more abstract mathematical structures that tells us how complicated they are.

1 W. Kubiś, P. Radecka, Evolution systems: A framework for studying generic mathematical structures, <https://arxiv.org/abs/2109.12600>

- **1** W. Kubiś, P. Radecka, *Evolution systems: A framework for studying* generic mathematical structures, <https://arxiv.org/abs/2109.12600>
- **2** W. Kubiś, S. Shelah, Analytic colorings, Ann. Pure Appl. Logic 121 (2003), no. 2-3, 145–161

Evolution systems

An evolution system is a structure of the form $\mathcal{E} = \langle \mathfrak{V}, \mathcal{T}, \Theta \rangle$, where $\mathfrak V$ is a category (called the universe), Θ is a fixed V-object, called the origin, and T is a class of $\mathfrak V$ -arrows, called transitions.

An evolution system is a structure of the form $\mathcal{E} = \langle \mathfrak{V}, \mathcal{T}, \Theta \rangle$, where $\mathfrak V$ is a category (called the universe), Θ is a fixed $\mathfrak V$ -object, called the origin, and τ is a class of $\mathfrak V$ -arrows, called transitions. The only requirements are:

- \blacksquare All identities are in \mathcal{T} .
- **2** $h \circ t \in \mathcal{T}$, whenever $t \in \mathcal{T}$ and h is an isomorphism.
- **3** (Regularity) $t \circ g \in T$, whenever $t \in T$ and g is an isomorphism.

An evolution system is a structure of the form $\mathcal{E} = \langle \mathfrak{V}, \mathcal{T}, \Theta \rangle$, where $\mathfrak V$ is a category (called the universe), Θ is a fixed $\mathfrak V$ -object, called the origin, and τ is a class of $\mathfrak V$ -arrows, called transitions.

- The only requirements are:
	- \blacksquare All identities are in \mathcal{T} .
	- **2** $h \circ t \in \mathcal{T}$, whenever $t \in \mathcal{T}$ and h is an isomorphism.
	- **3** (Regularity) $t \circ g \in T$, whenever $t \in T$ and g is an isomorphism.

Local smallness

Given an object X, denote by $T(X)$ the class of all transitions with domain X. We shall assume that for each X there is a set $S(X) \subseteq T(X)$ that covers $\mathcal{T}(X)$ in the sense that for every $t\in \mathcal{T}(X)$ there is $t'\in \mathcal{S}(X)$ and an isomorphism h satisfying $t = h \circ t'$.

An evolution is a sequence of the form

$$
\Theta \to A_0 \to A_1 \to \cdots \to A_n \to \cdots
$$

where each of the arrows above is a transition. We shall assume that each evolution has a colimit in $\mathfrak V$.

An evolution is a sequence of the form

$$
\Theta \to A_0 \to A_1 \to \cdots \to A_n \to \cdots
$$

where each of the arrows above is a transition. We shall assume that each evolution has a colimit in $\mathfrak V$.

A path is a finite composition of transitions.

An object X is finite if there exists a path from the origin Θ to X.

An object X is finite if there exists a path from the origin Θ to X.

The category of all finite objects with paths will be denoted by $\mathcal{E}^{\mathsf{fin}}$.

An object X is finite if there exists a path from the origin Θ to X.

The category of all finite objects with paths will be denoted by $\mathcal{E}^{\mathsf{fin}}$.

Definition

An object M is countable if there exists an evolution whose colimit is M.

An object X is finite if there exists a path from the origin Θ to X.

The category of all finite objects with paths will be denoted by $\mathcal{E}^{\mathsf{fin}}$.

Definition

An object M is countable if there exists an evolution whose colimit is M.

The category of countable objects with countable paths will be denoted by \mathcal{E}^{σ} .

Example

Let F be a hereditary class of models of a fixed relational first-order language. We declare Θ to be the trivial structure. Transitions are one-point extensions and isomorphisms. The universe $\mathfrak V$ could consist either of all embeddings or all homomorphisms.

Example

Let $\mathcal F$ be a hereditary class of models of a fixed relational first-order language. We declare Θ to be the trivial structure. Transitions are one-point extensions and isomorphisms. The universe $\mathfrak V$ could consist either of all embeddings or all homomorphisms.

Example

Let $\mathcal C$ be a category of profinite first-ordered structures, again in a relational language. Now we declare Θ to be the singleton and we declare $f: X \to Y$ to be a transition if it is a continuous quotient epimorphism and there is at most one $y_0 \in Y$ with $|f^{-1}(y_0)| = 2$, while $|f^{-1}(y)| = 1$ for every $y \in Y \setminus \{y_0\}$.

A concrete example

Example

Fix an integer $k > 0$. Let $\mathfrak V$ be the category of graphs, Θ the singleton graph. We declare $t\colon G \to G'$ a transition if it is either an isomorphism or else

$$
G'=t[G]\cup\{v\}
$$

and v is connected to at most k vertices of $t[G]$.

Abstract Fraïssé theory

We say that $\mathcal E$ has the transition amalgamation property (briefly: TAP) if for every finite object Z, for every transitions $f: Z \rightarrow X$, $g: Z \rightarrow Y$ there exist transitions f', g' such that $f' \circ f = g' \circ g$.

We say that $\mathcal E$ has the transition amalgamation property (briefly: TAP) if for every finite object Z, for every transitions $f: Z \rightarrow X$, $g: Z \rightarrow Y$ there exist transitions f', g' such that $f' \circ f = g' \circ g$.

An evolution system $\mathcal E$ is locally countable if for every finite object A there is a countable set of transitions from A covering all left-isomorphism classes of transitions from A.

An evolution system $\mathcal E$ is locally countable if for every finite object A there is a countable set of transitions from A covering all left-isomorphism classes of transitions from A.

Definition

An evolution \vec{u} has the absorption property if for every n, for every transition t: $U_n \rightarrow Y$ there are $m > n$ and a path $g: Y \rightarrow U_m$ such that $f \circ t = u_n^m$.

An evolution system $\mathcal E$ is locally countable if for every finite object A there is a countable set of transitions from A covering all left-isomorphism classes of transitions from A.

Definition

An evolution \vec{u} has the absorption property if for every n, for every transition t: $U_n \to Y$ there are $m > n$ and a path $g: Y \to U_m$ such that $f \circ t = u_n^m$.

$$
\Theta = U_0 \longrightarrow U_1 \longrightarrow \cdots \longrightarrow U_n \longrightarrow \cdots \longrightarrow U_m \longrightarrow \cdots
$$

An evolution system $\mathcal E$ is locally countable if for every finite object A there is a countable set of transitions from A covering all left-isomorphism classes of transitions from A.

Definition

An evolution \vec{u} has the absorption property if for every n, for every transition t: $U_n \to Y$ there are $m > n$ and a path $g: Y \to U_m$ such that $f \circ t = u_n^m$.

Assume $\mathcal E$ is locally countable and has the TAP. Then there exists an evolution \vec{u} with the absorption property.

Assume $\mathcal E$ is locally countable and has the TAP. Then there exists an evolution \vec{u} with the absorption property. Furthermore, evolutions with the absorption property have isomorphic colimits.

Assume $\mathcal E$ is locally countable and has the TAP. Then there exists an evolution \vec{u} with the absorption property. Furthermore, evolutions with the absorption property have isomorphic colimits.

Definition

The colimit of an evolution with the absorption property will be called \mathcal{E} -generic.

Assume $\mathcal E$ is locally countable and has the TAP. Then there exists an evolution \vec{u} with the absorption property. Furthermore, evolutions with the absorption property have isomorphic colimits.

Definition

The colimit of an evolution with the absorption property will be called \mathcal{E} -generic.

Theorem

The \mathcal{E} -generic object U is \mathcal{E}^{fin} -homogeneous and \mathcal{E}^{σ} -cofinal.

Assume $\mathcal E$ is locally countable and has the TAP. Then there exists an evolution \vec{u} with the absorption property. Furthermore, evolutions with the absorption property have isomorphic colimits.

Definition

The colimit of an evolution with the absorption property will be called \mathcal{E} -generic.

Theorem

The \mathcal{E} -generic object U is \mathcal{E}^{fin} -homogeneous and \mathcal{E}^{σ} -cofinal. More precisely:

- \blacksquare Given a finite object A and paths $f_i\colon A\to U$, $i=0,1$, there is an automorphism h: $U \rightarrow U$ such that $f_1 = h \circ f_0$.
- **2** For every countable object M there is a countable path $p: M \rightarrow U$.

Functors

A functor of evolution systems is a functor of their universes that preserves both the origin and the transitions.

A transition is nontrivial if it is not an isomorphism.

A transition is nontrivial if it is not an isomorphism.

Definition

Let $\Phi: \mathcal{E} \to \mathcal{E}'$ be a functor of evolution systems. We define the rank rk_Φ(A) for each finite object A in $\mathcal E$ by the following rules.

- (O) rk $_{\Phi}(A)$ is either an ordinal or ∞ , and we agree that ∞ is above all ordinals.
- (R) rk $_{\Phi}(A) \geq \alpha + 1$ if and only if for every nontrivial transition f: $\Phi A \rightarrow Y$ there exists a transition $t: A \rightarrow B$ such that $rk_{\Phi}(B) > \alpha$ and Φt is left-isomorphic to f, that is, $f = h \circ \Phi t$ for some isomorphism h.

A transition is nontrivial if it is not an isomorphism.

Definition

Let $\Phi: \mathcal{E} \to \mathcal{E}'$ be a functor of evolution systems. We define the rank rk_Φ(A) for each finite object A in $\mathcal E$ by the following rules.

- (O) rk_Φ(A) is either an ordinal or ∞ , and we agree that ∞ is above all ordinals.
- (R) rk $_{\Phi}(A) \geq \alpha + 1$ if and only if for every nontrivial transition f: $\Phi A \rightarrow Y$ there exists a transition $t: A \rightarrow B$ such that $rk_{\Phi}(B) > \alpha$ and Φt is left-isomorphic to f, that is, $f = h \circ \Phi t$ for some isomorphism h.

It is natural to define

$$
\mathsf{rk}(\Phi):=\mathsf{rk}_\Phi(\Theta).
$$

A transition is nontrivial if it is not an isomorphism.

Definition

Let $\Phi: \mathcal{E} \to \mathcal{E}'$ be a functor of evolution systems. We define the rank rk_Φ(A) for each finite object A in $\mathcal E$ by the following rules.

- (O) rk_Φ(A) is either an ordinal or ∞ , and we agree that ∞ is above all ordinals.
- (R) rk $_{\Phi}(A) \geq \alpha + 1$ if and only if for every nontrivial transition f: $\Phi A \rightarrow Y$ there exists a transition $t: A \rightarrow B$ such that $rk_{\Phi}(B) > \alpha$ and Φt is left-isomorphic to f, that is, $f = h \circ \Phi t$ for some isomorphism h.

It is natural to define

$$
\mathsf{rk}(\Phi):=\mathsf{rk}_\Phi(\Theta).
$$

Another option is

$$
\mathsf{rk}(\Phi) := \mathsf{sup} \{ \mathsf{rk}_\Phi(A) \colon A \in \mathsf{Obj}(\mathcal{E}^\mathsf{fin}) \}.
$$

Proposition

Let Φ : $\mathcal{E} \to \mathcal{E}'$ be a functor of evolution systems. Then

 $rk_{\Phi}(A) = rk_{\Phi}(B)$

for every isomorphic finite objects A, B.

Proposition

Let Φ : $\mathcal{E} \to \mathcal{E}'$ be a functor of evolution systems. Then

 $rk_{\Phi}(A) = rk_{\Phi}(B)$

for every isomorphic finite objects A, B.

Proposition

Under the assumptions above, there is always an ordinal γ such that rk_Φ has values in $\gamma \cup \{\infty\}$.

Proposition

Let Φ : $\mathcal{E} \to \mathcal{E}'$ be a functor of evolution systems. Then

 $rk_{\Phi}(A) = rk_{\Phi}(B)$

for every isomorphic finite objects A, B.

Proposition

Under the assumptions above, there is always an ordinal γ such that rk_Φ has values in $\gamma \cup \{\infty\}$.

Proposition

Let $\Phi: \mathcal{E} \to \mathcal{E}'$ be a functor of evolution systems. If \mathcal{E} is locally countable, then rk $_{\Phi}$ has values in $\omega_1 \cup \{\infty\}$.

Fix an evolution system $\mathcal E$ and fix and object M of its universe $\mathfrak V$. Assume that the origin Θ is initial in $\mathfrak V$.

Fix an evolution system $\mathcal E$ and fix and object M of its universe $\mathfrak V$. Assume that the origin Θ is initial in $\mathfrak V$. Define a new system $\mathcal{E}_M = \langle \mathfrak{V}_M, \mathcal{T}_M, \Theta_M \rangle$ as follows.

- (0) The objects of \mathfrak{V}_M are paths from finite objects into M. The arrows are $\mathfrak V$ -arrows making $\mathfrak V_M$ a comma category. Specifically, if f : $A \rightarrow M$, $g : B \rightarrow M$ are \mathfrak{V}_M -objects, an arrow from f to g is any $\mathfrak V$ -arrow $k: A \to B$ satisfying $f = g \circ k$.
- (1) Transitions are the same as in \mathcal{E} , now treated as \mathfrak{V}_M -arrows.
- (2) Θ_M is the unique path from Θ to M.

Fix an evolution system $\mathcal E$ and fix and object M of its universe $\mathfrak V$. Assume that the origin Θ is initial in $\mathfrak V$. Define a new system $\mathcal{E}_M = \langle \mathfrak{V}_M, \mathcal{T}_M, \Theta_M \rangle$ as follows.

- (0) The objects of \mathfrak{V}_M are paths from finite objects into M. The arrows are $\mathfrak V$ -arrows making $\mathfrak V_M$ a comma category. Specifically, if f : $A \rightarrow M$, $g : B \rightarrow M$ are \mathfrak{V}_M -objects, an arrow from f to g is any $\mathfrak V$ -arrow $k: A \to B$ satisfying $f = g \circ k$.
- (1) Transitions are the same as in \mathcal{E} , now treated as \mathfrak{V}_M -arrows.
- (2) Θ_M is the unique path from Θ to M.

Fact

There is a canonical functor $\Phi_M : \mathcal{E}_M \to \mathcal{E}$, forgetting M.

Fix an evolution system $\mathcal E$ and fix and object M of its universe $\mathfrak V$. Assume that the origin Θ is initial in $\mathfrak V$. Define a new system $\mathcal{E}_M = \langle \mathfrak{V}_M, \mathcal{T}_M, \Theta_M \rangle$ as follows.

- (0) The objects of \mathfrak{V}_M are paths from finite objects into M. The arrows are $\mathfrak V$ -arrows making $\mathfrak V_M$ a comma category. Specifically, if f : $A \rightarrow M$, $g : B \rightarrow M$ are \mathfrak{V}_M -objects, an arrow from f to g is any $\mathfrak V$ -arrow $k: A \to B$ satisfying $f = g \circ k$.
- (1) Transitions are the same as in \mathcal{E} , now treated as \mathfrak{V}_M -arrows.
- (2) Θ_M is the unique path from Θ to M.

Fact

There is a canonical functor $\Phi_M : \mathcal{E}_M \to \mathcal{E}$, forgetting M.

Definition

Define $rk(M) := rk(\Phi_M)$.

Assume $\mathcal E$ is an evolution system and M is an object with $rk(M) = \infty$. Then for every countable object X there exists a $\mathfrak{V}\text{-}arrow f: X \to M$.

Assume $\mathcal E$ is an evolution system and M is an object with $rk(M) = \infty$. Then for every countable object X there exists a $\mathfrak{V}\textrm{-}arrow$ f : $X \rightarrow M$.

Theorem

Assume $\mathcal E$ is locally countable, with the TAP, and let U be its generic object. Given a V-object M, the following properties are equivalent.

(a)
$$
\text{rk}(M) = \infty
$$
.

(b) There exists a $\mathfrak V$ -arrow $f: U \to M$.

A poster with a simplified version can be found at

https://users.math.cas.cz/kubis/pdfs/ranksEvasPS_ver2.pdf

A poster with a simplified version can be found at

https://users.math.cas.cz/kubis/pdfs/ranksEvasPS_ver2.pdf

THE END