An ordinal rank measuring universality

Wiesław Kubiś

Institute of Mathematics, CAS, Prague, Czechia

Cardinal Stefan Wyszyński University in Warsaw, Poland

SETTOP 19 – 22 August 2024, Novi Sad, Serbia

Joint work (in progress) with S. Shelah

~~~???~~~

Joint work (in progress) with S. Shelah

Main task

Study a natural rank on models or more abstract mathematical structures that tells us how complicated they are.

 W. Kubiś, P. Radecka, Evolution systems: A framework for studying generic mathematical structures, https://arxiv.org/abs/2109.12600

- W. Kubiś, P. Radecka, Evolution systems: A framework for studying generic mathematical structures, https://arxiv.org/abs/2109.12600
- W. Kubiś, S. Shelah, Analytic colorings, Ann. Pure Appl. Logic 121 (2003), no. 2-3, 145–161

Evolution systems

An evolution system is a structure of the form $\mathcal{E} = \langle \mathfrak{V}, \mathcal{T}, \Theta \rangle$, where \mathfrak{V} is a category (called the universe), Θ is a fixed \mathfrak{V} -object, called the origin, and \mathcal{T} is a class of \mathfrak{V} -arrows, called transitions.

An evolution system is a structure of the form $\mathcal{E} = \langle \mathfrak{V}, \mathcal{T}, \Theta \rangle$, where \mathfrak{V} is a category (called the universe), Θ is a fixed \mathfrak{V} -object, called the origin, and \mathcal{T} is a class of \mathfrak{V} -arrows, called transitions.

- The only requirements are:
 - $\blacksquare \text{ All identities are in } \mathcal{T}.$
 - **2** $h \circ t \in \mathcal{T}$, whenever $t \in \mathcal{T}$ and h is an isomorphism.
 - **3** (Regularity) $t \circ g \in \mathcal{T}$, whenever $t \in \mathcal{T}$ and g is an isomorphism.

An evolution system is a structure of the form $\mathcal{E} = \langle \mathfrak{V}, \mathcal{T}, \Theta \rangle$, where \mathfrak{V} is a category (called the universe), Θ is a fixed \mathfrak{V} -object, called the origin, and \mathcal{T} is a class of \mathfrak{V} -arrows, called transitions.

- The only requirements are:
 - **1** All identities are in \mathcal{T} .
 - **2** $h \circ t \in \mathcal{T}$, whenever $t \in \mathcal{T}$ and h is an isomorphism.
 - **3** (Regularity) $t \circ g \in \mathcal{T}$, whenever $t \in \mathcal{T}$ and g is an isomorphism.

Local smallness

Given an object X, denote by $\mathcal{T}(X)$ the class of all transitions with domain X. We shall assume that for each X there is a set $\mathcal{S}(X) \subseteq \mathcal{T}(X)$ that covers $\mathcal{T}(X)$ in the sense that for every $t \in \mathcal{T}(X)$ there is $t' \in \mathcal{S}(X)$ and an isomorphism h satisfying $t = h \circ t'$.

An evolution is a sequence of the form

$$\Theta \to A_0 \to A_1 \to \cdots \to A_n \to \cdots$$

where each of the arrows above is a transition. We shall assume that each evolution has a colimit in \mathfrak{V} .

An evolution is a sequence of the form

$$\Theta \to A_0 \to A_1 \to \cdots \to A_n \to \cdots$$

where each of the arrows above is a transition. We shall assume that each evolution has a colimit in $\mathfrak{V}.$

A path is a finite composition of transitions.

An object X is finite if there exists a path from the origin Θ to X.

An object X is finite if there exists a path from the origin Θ to X.

The category of all finite objects with paths will be denoted by $\mathcal{E}^{\mathsf{fin}}.$

An object X is finite if there exists a path from the origin Θ to X.

The category of all finite objects with paths will be denoted by $\mathcal{E}^{\mathsf{fin}}.$

Definition

An object M is countable if there exists an evolution whose colimit is M.

An object X is finite if there exists a path from the origin Θ to X.

The category of all finite objects with paths will be denoted by $\mathcal{E}^{\mathsf{fin}}.$

Definition

An object M is countable if there exists an evolution whose colimit is M.

The category of countable objects with *countable paths* will be denoted by \mathcal{E}^{σ} .

Example

Let \mathcal{F} be a hereditary class of models of a fixed relational first-order language. We declare Θ to be the trivial structure. Transitions are one-point extensions and isomorphisms. The universe \mathfrak{V} could consist either of all embeddings or all homomorphisms.

Example

Let \mathcal{F} be a hereditary class of models of a fixed relational first-order language. We declare Θ to be the trivial structure. Transitions are one-point extensions and isomorphisms. The universe \mathfrak{V} could consist either of all embeddings or all homomorphisms.

Example

Let C be a category of profinite first-ordered structures, again in a relational language. Now we declare Θ to be the singleton and we declare $f: X \to Y$ to be a transition if it is a continuous quotient epimorphism and there is at most one $y_0 \in Y$ with $|f^{-1}(y_0)| = 2$, while $|f^{-1}(y)| = 1$ for every $y \in Y \setminus \{y_0\}$.

A concrete example

Example

Fix an integer k > 0. Let \mathfrak{V} be the category of graphs, Θ the singleton graph. We declare $t: G \to G'$ a transition if it is either an isomorphism or else

$$G' = t[G] \cup \{v\}$$

and v is connected to at most k vertices of t[G].

Abstract Fraïssé theory

We say that \mathcal{E} has the transition amalgamation property (briefly: TAP) if for every finite object Z, for every transitions $f: Z \to X, g: Z \to Y$ there exist transitions f', g' such that $f' \circ f = g' \circ g$.

We say that \mathcal{E} has the transition amalgamation property (briefly: TAP) if for every finite object Z, for every transitions $f: Z \to X$, $g: Z \to Y$ there exist transitions f', g' such that $f' \circ f = g' \circ g$.

An evolution system \mathcal{E} is locally countable if for every finite object A there is a countable set of transitions from A covering all left-isomorphism classes of transitions from A.

An evolution system \mathcal{E} is locally countable if for every finite object A there is a countable set of transitions from A covering all left-isomorphism classes of transitions from A.

Definition

An evolution \vec{u} has the absorption property if for every n, for every transition $t: U_n \to Y$ there are m > n and a path $g: Y \to U_m$ such that $f \circ t = u_n^m$.

An evolution system \mathcal{E} is locally countable if for every finite object A there is a countable set of transitions from A covering all left-isomorphism classes of transitions from A.

Definition

An evolution \vec{u} has the absorption property if for every n, for every transition $t: U_n \to Y$ there are m > n and a path $g: Y \to U_m$ such that $f \circ t = u_n^m$.

$$\Theta = U_0 \longrightarrow U_1 \longrightarrow \cdots \longrightarrow U_n \longrightarrow \cdots \longrightarrow U_m \longrightarrow \cdots$$

An evolution system \mathcal{E} is locally countable if for every finite object A there is a countable set of transitions from A covering all left-isomorphism classes of transitions from A.

Definition

An evolution \vec{u} has the absorption property if for every n, for every transition $t: U_n \to Y$ there are m > n and a path $g: Y \to U_m$ such that $f \circ t = u_n^m$.

Assume \mathcal{E} is locally countable and has the TAP. Then there exists an evolution \vec{u} with the absorption property.

Assume \mathcal{E} is locally countable and has the TAP. Then there exists an evolution \vec{u} with the absorption property. Furthermore, evolutions with the absorption property have isomorphic

colimits.

Assume \mathcal{E} is locally countable and has the TAP. Then there exists an evolution \vec{u} with the absorption property. Furthermore, evolutions with the absorption property have isomorphic colimits.

Definition

The colimit of an evolution with the absorption property will be called \mathcal{E} -generic.

Assume \mathcal{E} is locally countable and has the TAP. Then there exists an evolution \vec{u} with the absorption property. Furthermore, evolutions with the absorption property have isomorphic colimits.

Definition

The colimit of an evolution with the absorption property will be called \mathcal{E} -generic.

Theorem

The \mathcal{E} -generic object U is \mathcal{E}^{fin} -homogeneous and \mathcal{E}^{σ} -cofinal.

Assume \mathcal{E} is locally countable and has the TAP. Then there exists an evolution \vec{u} with the absorption property. Furthermore, evolutions with the absorption property have isomorphic colimits.

Definition

The colimit of an evolution with the absorption property will be called \mathcal{E} -generic.

Theorem

The \mathcal{E} -generic object U is \mathcal{E}^{fin} -homogeneous and \mathcal{E}^{σ} -cofinal. More precisely:

- Given a finite object A and paths $f_i: A \to U$, i = 0, 1, there is an automorphism $h: U \to U$ such that $f_1 = h \circ f_0$.
- **2** For every countable object M there is a countable path $p: M \to U$.

A functor of evolution systems is a functor of their universes that preserves both the origin and the transitions.

A transition is nontrivial if it is not an isomorphism.

A transition is nontrivial if it is not an isomorphism.

Definition

Let $\Phi: \mathcal{E} \to \mathcal{E}'$ be a functor of evolution systems. We define the rank $\mathsf{rk}_{\Phi}(A)$ for each finite object A in \mathcal{E} by the following rules.

- (0) $\mathsf{rk}_{\Phi}(A)$ is either an ordinal or ∞ , and we agree that ∞ is above all ordinals.
- (R) $\operatorname{rk}_{\Phi}(A) \geq \alpha + 1$ if and only if for every nontrivial transition $f: \Phi A \to Y$ there exists a transition $t: A \to B$ such that $\operatorname{rk}_{\Phi}(B) \geq \alpha$ and Φt is left-isomorphic to f, that is, $f = h \circ \Phi t$ for some isomorphism h.

A transition is nontrivial if it is not an isomorphism.

Definition

Let $\Phi: \mathcal{E} \to \mathcal{E}'$ be a functor of evolution systems. We define the rank $\mathsf{rk}_{\Phi}(A)$ for each finite object A in \mathcal{E} by the following rules.

- (0) $\mathsf{rk}_{\Phi}(A)$ is either an ordinal or ∞ , and we agree that ∞ is above all ordinals.
- (R) $\operatorname{rk}_{\Phi}(A) \ge \alpha + 1$ if and only if for every nontrivial transition $f: \Phi A \to Y$ there exists a transition $t: A \to B$ such that $\operatorname{rk}_{\Phi}(B) \ge \alpha$ and Φt is left-isomorphic to f, that is, $f = h \circ \Phi t$ for some isomorphism h.

It is natural to define

$$\mathsf{rk}(\Phi) := \mathsf{rk}_{\Phi}(\Theta).$$

A transition is nontrivial if it is not an isomorphism.

Definition

Let $\Phi: \mathcal{E} \to \mathcal{E}'$ be a functor of evolution systems. We define the rank $\mathsf{rk}_{\Phi}(A)$ for each finite object A in \mathcal{E} by the following rules.

- (0) $\mathsf{rk}_{\Phi}(A)$ is either an ordinal or ∞ , and we agree that ∞ is above all ordinals.
- (R) $\operatorname{rk}_{\Phi}(A) \ge \alpha + 1$ if and only if for every nontrivial transition $f: \Phi A \to Y$ there exists a transition $t: A \to B$ such that $\operatorname{rk}_{\Phi}(B) \ge \alpha$ and Φt is left-isomorphic to f, that is, $f = h \circ \Phi t$ for some isomorphism h.

It is natural to define

$$\mathsf{rk}(\Phi) := \mathsf{rk}_{\Phi}(\Theta).$$

Another option is

$$\mathsf{rk}(\Phi) := \sup\{\mathsf{rk}_{\Phi}(A) \colon A \in \mathsf{Obj}(\mathcal{E}^{\mathsf{fin}})\}.$$

Proposition

Let $\Phi\colon \mathcal{E}\to \mathcal{E}'$ be a functor of evolution systems. Then

 $\mathsf{rk}_{\Phi}(A) = \mathsf{rk}_{\Phi}(B)$

for every isomorphic finite objects A, B.

Proposition

Let $\Phi\colon \mathcal{E}\to \mathcal{E}'$ be a functor of evolution systems. Then

 $\mathsf{rk}_{\Phi}(A) = \mathsf{rk}_{\Phi}(B)$

for every isomorphic finite objects A, B.

Proposition

Under the assumptions above, there is always an ordinal γ such that rk_{Φ} has values in $\gamma \cup \{\infty\}$.

Proposition

Let $\Phi\colon \mathcal{E}\to \mathcal{E}'$ be a functor of evolution systems. Then

 $\mathsf{rk}_{\Phi}(A) = \mathsf{rk}_{\Phi}(B)$

for every isomorphic finite objects A, B.

Proposition

Under the assumptions above, there is always an ordinal γ such that rk_{Φ} has values in $\gamma \cup \{\infty\}$.

Proposition

Let $\Phi: \mathcal{E} \to \mathcal{E}'$ be a functor of evolution systems. If \mathcal{E} is locally countable, then rk_{Φ} has values in $\omega_1 \cup \{\infty\}$.

Fix an evolution system \mathcal{E} and fix and object M of its universe \mathfrak{V} . Assume that the origin Θ is initial in \mathfrak{V} .

Fix an evolution system \mathcal{E} and fix and object M of its universe \mathfrak{V} . Assume that the origin Θ is initial in \mathfrak{V} . Define a new system $\mathcal{E}_M = \langle \mathfrak{V}_M, \mathcal{T}_M, \Theta_M \rangle$ as follows.

- (0) The objects of 𝔅_M are paths from finite objects into M. The arrows are 𝔅-arrows making 𝔅_M a comma category. Specifically, if f: A → M, g: B → M are 𝔅_M-objects, an arrow from f to g is any 𝔅-arrow k: A → B satisfying f = g ∘ k.
- (1) Transitions are the same as in \mathcal{E} , now treated as \mathfrak{V}_M -arrows.
- (2) Θ_M is the unique path from Θ to M.

Fix an evolution system \mathcal{E} and fix and object M of its universe \mathfrak{V} . Assume that the origin Θ is initial in \mathfrak{V} . Define a new system $\mathcal{E}_M = \langle \mathfrak{V}_M, \mathcal{T}_M, \Theta_M \rangle$ as follows.

- (0) The objects of 𝔅_M are paths from finite objects into M. The arrows are 𝔅-arrows making 𝔅_M a comma category. Specifically, if f: A → M, g: B → M are 𝔅_M-objects, an arrow from f to g is any 𝔅-arrow k: A → B satisfying f = g ∘ k.
- (1) Transitions are the same as in \mathcal{E} , now treated as \mathfrak{V}_M -arrows.
- (2) Θ_M is the unique path from Θ to M.

Fact

There is a canonical functor $\Phi_M \colon \mathcal{E}_M \to \mathcal{E}$, forgetting M.

Fix an evolution system \mathcal{E} and fix and object M of its universe \mathfrak{V} . Assume that the origin Θ is initial in \mathfrak{V} . Define a new system $\mathcal{E}_M = \langle \mathfrak{V}_M, \mathcal{T}_M, \Theta_M \rangle$ as follows.

- (0) The objects of 𝔅_M are paths from finite objects into M. The arrows are 𝔅-arrows making 𝔅_M a comma category. Specifically, if f: A → M, g: B → M are 𝔅_M-objects, an arrow from f to g is any 𝔅-arrow k: A → B satisfying f = g ∘ k.
- (1) Transitions are the same as in \mathcal{E} , now treated as \mathfrak{V}_M -arrows.
- (2) Θ_M is the unique path from Θ to M.

Fact

There is a canonical functor $\Phi_M \colon \mathcal{E}_M \to \mathcal{E}$, forgetting M.

Definition

Define $rk(M) := rk(\Phi_M)$.

Assume \mathcal{E} is an evolution system and M is an object with $rk(M) = \infty$. Then for every countable object X there exists a \mathfrak{V} -arrow $f: X \to M$.

Assume \mathcal{E} is an evolution system and M is an object with $rk(M) = \infty$. Then for every countable object X there exists a \mathfrak{V} -arrow $f: X \to M$.

Theorem

Assume \mathcal{E} is locally countable, with the TAP, and let U be its generic object. Given a \mathfrak{V} -object M, the following properties are equivalent.

(a)
$$\operatorname{rk}(M) = \infty$$

(b) There exists a \mathfrak{V} -arrow $f: U \to M$.

A poster with a simplified version can be found at

https://users.math.cas.cz/kubis/pdfs/ranksEvasPS_ver2.pdf

A poster with a simplified version can be found at

https://users.math.cas.cz/kubis/pdfs/ranksEvasPS_ver2.pdf

THE END