On generic topological embeddings

Andrzej Kucharski joint work with W. Kubiś and S. Turek

University of Silesia in Katowice

Novi Sad Conference in Set Theory and General Topology 2024 August 19-22, 2024

- Let κ be a regular cardinal and \mathfrak{K} be a full subcategory of a bigger category \mathfrak{L} such that the following compatibility conditions are satisfied.
- (L0) All *L*-arrows are epi.
- (L1) Every inverse sequence of length κ in \mathfrak{K} has the limit in \mathfrak{L} .
- (L2) Every \mathfrak{L} -object is the limit of an inverse sequence in \mathfrak{K} .
- (L3) For every inverse sequence \vec{x} in \mathfrak{K} with $K = \lim \vec{x}$ in \mathfrak{L} , for every \mathfrak{K} -object Y, for every \mathfrak{L} -arrow $f: K \to Y$ there exist $\alpha < \kappa$ and a \mathfrak{K} -arrow $f': X_{\alpha} \to Y$ such that $f = f' \circ x_{\alpha}^{\infty}$.

R-generic

Now, an \mathfrak{L} -object U will be called \mathfrak{K} -generic if

(G1) $\mathfrak{L}(U, X) \neq \emptyset$ for every $X \in Obj(\mathfrak{K})$.

(G2) For every \mathfrak{K} -arrow $f: Y \to X$, for every \mathfrak{L} -arrow $g: U \to X$ there exists an \mathfrak{L} -arrow $h: U \to Y$ such that $f \circ h = g$.

The Cantor set $\{0,1\}^{\omega}$

Let \mathfrak{Fin} be a category of finite nonempty discrete spaces

as a full subcategory of the category

Comp of compact metric spaces and continuous surjections

- (G1) $\mathfrak{Comp}(\{0,1\}^{\omega}, X) \neq \emptyset$ for every $X \in \mathsf{Obj}(\mathfrak{Fin})$.
- (G2) For every \mathfrak{Fin} -arrow $f: Y \to X$, for every \mathfrak{Comp} -arrow $g: \{0,1\}^{\omega} \to X$ there exists an \mathfrak{Comp} -arrow $h: \{0,1\}^{\omega} \to Y$ such that $f \circ h = g$.

The Cantor set is the *fin*-generic object.

.

The Čech-Stone remainder ω^*

Let \mathfrak{Comp} be a category of compact metric spaces and continuous surjections

and

let \mathfrak{L} be a category of compact spaces of weight not greater than the continuum, with continuous surjections.

The following results of Parovičenko and Negrepontis imply that ω^* is **Comp-generic**.

(G1)Theorem (Parovičenko)

Every compact metric space is a continuous image of ω^*

(G2)Theorem (Negrepontis)

Assuming [CH], ω^* is compact Hausdorff space of weight ω_1 such that for every two continuous surjections $f: \omega^* \to X$ and $g: Y \to X$ with X and Y compact metric, there exists a continuous surjection $h: \omega^* \to Y$ such that $g \circ h = f$

A κ -Fraïssé sequence in \Re is an inverse sequence \vec{u} of regular length κ satisfying the following conditions:

- (U) For every object X of \mathfrak{K} there exists $\alpha < \kappa$ such that $\mathfrak{K}(U_{\alpha}, X) \neq \emptyset$.
- (A) For every $\alpha < \kappa$ and for every morphism $f: Y \to U_{\alpha}$, where $Y \in \text{Obj}(\mathfrak{K})$, there exist $\beta \ge \alpha$ and $g: U_{\beta} \to Y$ such that $u_{\alpha}^{\beta} = f \circ g$.

Categories of κ -ultrametric spaces

Let γ be an ordinal. A γ -ultrametric (also called an "inverse γ -metric") on a set X is a function $u: X \times X \to \gamma + 1$ such that for all $x, y, z \in X$: (U1) $u(x, y) = \gamma$ if and only if x = y, (U2) $u(y, z) \ge \min\{u(y, x), u(x, z)\}$ (ultrametric triangle law), (U3) u(x, y) = u(y, x) (symmetry). Let κ, λ be infinite cardinals.

We define a λ -ultrametric $u \colon \kappa^{\lambda} \times \kappa^{\lambda} \to \lambda + 1$ by the formula:

$$u(a,b) = \sup\{\alpha < \lambda \colon a \upharpoonright \alpha = b \upharpoonright \alpha\}$$

for $a, b \in \kappa^{\lambda}$. If X is a discrete space, then for any ordinal $\gamma \ge \omega$ there is a natural γ -ultrametric $d: X \times X \to \gamma + 1$ on X, namely $d(a, b) = \gamma$ iff a = b and d(a, b) = 0 iff $a \ne b$. Since $B_{\gamma}(x) = \{x\}$ the set $\{x\}$ is open for any $x \in X$. So in this case γ -ultrametric topology is discrete. A closed ball of radius α and center x is a set of the form

$$B_{\alpha}(x) = \{y \in X : u(x, y) \ge \alpha\},\$$

where $x \in X$ and $\alpha \in \gamma$. Each γ -ultrametric induces a topology whose base is the family of all closed balls of radius less then γ . We will call a space with this topology γ -ultrametric.

We say that a λ -ultrametric space (X, d) of weight not greater than $\kappa^{<\lambda}$ is (λ, κ) -bounded if there is a non-decreasing sequence of ordinals numbers $\{\gamma_{\alpha} : \alpha < \lambda\} \subset \lambda$ such that $|\{B_{\alpha}(a) : a \in X\}| \leq |\kappa^{\gamma_{\alpha}}|$ for every $\alpha < \lambda$. A space κ^{ω} with ultrametric defined as above is (ω, κ) -bounded. From here on, we will assume that κ, λ are regular cardinals such that $\lambda \leq \kappa$.

A λ -ultrametric space X is spherically complete if every nonempty chain of closed balls has nonempty intersection.

Theorem (Kubiś, K., Turek)

A topological space X is (λ, κ) -bounded and spherically complete if and only if there exists a non-decreasing sequence of ordinals $\{\gamma_{\alpha} : \alpha < \lambda\} \subset \lambda$ and exists an inverse sequence $\{X_{\alpha}, q_{\alpha}^{\beta}, \alpha \leq \beta < \lambda\}$ such that

•
$$X = \varprojlim \{X_{\alpha}, q_{\alpha}^{\beta}, \alpha \leq \beta < \lambda\},$$

• X_{α} is a discrete space of cardinality not greater than $|\kappa^{\gamma_{\alpha}}|$ for each $\alpha < \lambda$,

•
$$q_{\alpha}^{\beta} \colon X_{\beta} \to X_{\alpha}$$
 is surjection for all $\alpha \leq \beta < \lambda$.

Fix a λ -ultrametric space (K, u) of weight κ . The objects of \mathfrak{M}_K are uniformly continuous mappings $f: K \to X$, where (X, d) is a (λ, κ) -bounded and spherically complete.. Given two \mathfrak{M}_K -objects $f_0: K \to X_0, f_1: K \to X_1$, an \mathfrak{M}_K -arrow from f_1 to f_0 is a uniformly continuous surjection $q: X_1 \to X_0$ satisfying $q \circ f_1 = f_0$. The composition in \mathfrak{M}_K is the usual composition of mappings.

Let \mathfrak{D}_{K} be the full subcategory of \mathfrak{M}_{K} whose objects are $f: K \to X$ such that X is a discrete space of cardinality not greater than $|\kappa^{\gamma}|$ for some $\gamma < \lambda$.

We say that a function $f: K \to X$ is uniformly continuous if

$$\forall_{\epsilon \in \tau} \exists_{\delta \in \kappa} \forall_{\mathsf{a}, \mathsf{b} \in \mathsf{K}} \ \mathsf{u}(\mathsf{a}, \mathsf{b}) \geq \delta \Rightarrow \mathsf{d}(\mathsf{f}(\mathsf{a}), \mathsf{f}(\mathsf{b})) \geq \epsilon_{\mathsf{s}}$$

where $u: K \times K \to \kappa + 1$ and $d: X \times X \to \tau + 1$ are ultrametrics; i. e. given $B_{\epsilon}(f(a))$ there is $\delta \in \kappa$ such that

 $f^{-1}[B_{\epsilon}(f(a))] = \bigcup \left\{ B_{\delta}(c) \colon c \in f^{-1}[B_{\epsilon}(f(a))] \right\}.$

A family of arrows ${\cal F}$ is dominating in ${\mathfrak K}$ if it satisfies the following two conditions.

(i) For every $X \in \operatorname{Obj}(\mathfrak{K})$ there is $A \in \operatorname{Cod}(\mathcal{F})$ such that $\mathfrak{K}(A, X) \neq \emptyset$.

(ii) Given $A \in Cod(\mathcal{F})$ and $f \in \mathfrak{K}(Y, A)$ there exist $g \in \mathfrak{K}(B, Y)$ such that $f \circ g \in \mathcal{F}$.

Theorem (Kubiś (2014))

Let κ be an infinite regular cardinal and let \Re be a κ -complete directed category with the amalgamation property. Assume further that $\mathcal{F} \subseteq \Re$ is dominating in \Re and $|\mathcal{F}| \leq \kappa$. Then there exists a continuous Fraïssé sequence of length κ in \Re .

Theorem (Kubiś, K., Turek)

There exists a continuous Fraïssé λ -sequence in $\mathfrak{D}_{\mathcal{K}}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Kubiś, K., Turek)

Assume that $\vec{\phi} = (\phi_{\alpha} : \alpha < \lambda)$ is a continuous Fraïssé λ -sequence in \mathfrak{D}_{K} , where $\phi_{\alpha} : K \to U_{\alpha}$ for each $\alpha < \kappa$. Then

- (1) $\vec{u} = (U_{\alpha}: \alpha < \lambda)$ is a Fraïssé sequence in the category of discrete spaces of cardinality not greater than $|\kappa^{\gamma}|$ for some $\gamma < \lambda$ and surjection.
- (2) The limit map $\phi_{\lambda} \colon K \to \lim \vec{u}$ has a left inverse, i.e. there is $r \colon \lim \vec{u} \to K$ such that $r \circ \phi_{\lambda} = \operatorname{id}_{K}$.
- (3) The image $\phi_{\lambda}[K] \subseteq U_{\lambda} = \lim \vec{u}$ is uniformly nowhere dense.

< 47 ▶

We say that a subset A of a λ -ultrametric space (X, d) of weight κ is uniformly nowhere dense if for every $\alpha < \lambda$ there is $\beta > \alpha$ such that

$$\{B_eta(a)\colon B_eta(a)\cap A=\emptyset \ , a\in B_lpha(b)\}
eq \emptyset$$

for every $b \in X$. Note that every uniformly nowhere dense subset of the ultrametric space κ^{λ} is nowhere dense.

Corollary (Kubiś, K., Turek)

A λ -ultrametric space (K, u) of weight κ can be uniformly embedded into κ^{λ} as a uniformly nowhere dense subset.

Theorem (Kubiś, K., Turek)

If $\eta: K \to \kappa^{\lambda}$ is uniformly embedded such that $\eta[K]$ is uniformly nowhere dense in the λ -ultrametric space κ^{λ} , then $\eta: K \to \kappa^{\lambda}$ is \mathfrak{D}_{K} -generic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corollary (Kubiś, K., Turek)

Every uniform homeomorphism of uniformly nowhere dense sets in κ^{λ} can be extended to a uniform auto-homeomorphism of κ^{λ} .

Corollary (Kubiś, K., Turek)

Every uniformly nowhere dense set in κ^{λ} is a retract of κ^{λ} .

A topological space X is κ -compact if every open cover of X has a subcover of size strictly less than κ .

A cardinal κ is *weakly compact* if it is uncountable and has the Ramsey property $\kappa \to (\kappa)^2$, i.e., if $f : [\kappa]^2 \to \{0,1\}$ then there are $i \in \{0,1\}$ and $A \in [\kappa]^{\kappa}$ such that $f \upharpoonright A = \{i\}$

Theorem (Monk, Scott)

A cardinal number κ is weakly compact if and only if the κ -ultrametric 2^{κ} is κ -compact.

From here on, we will assume that κ is a weakly compact cardinal.

Fix a κ -compact ultrametric space (K, u) of weight not greater than κ , where $u: K \times K \to \kappa + 1$. The objects of \mathfrak{M}_{K}^{w} are continuous mappings $f: K \to X$, where (X, d) is a κ -ultrametric space of weight not greater than κ . Given two \mathfrak{M}_{K}^{w} -objects $f_{0}: K \to X_{0}, f_{1}: K \to X_{1}$, a \mathfrak{M}_{K}^{w} -arrow from f_{1} to f_{0} is a continuous surjection $q: X_{1} \to X_{0}$. The composition in \mathfrak{M}_{K}^{w} is the usual composition of mappings.

We define \mathfrak{D}_{K}^{w} to be the full subcategory of \mathfrak{M}_{K}^{w} whose objects are $f: K \to X$ such that X is a discrete spaces of cardinality $< \kappa$.

Theorem (Kubiś, K., Turek)

Assume that $\vec{\phi} = (\phi_{\alpha} : \alpha < \kappa)$ is a continuous Fraïssé κ -sequence in \mathfrak{D}_{K}^{w} , where $\phi_{\alpha} : K \to U_{\alpha}$ for each $\alpha < \kappa$. Then

- (1) $\vec{u} = (U_{\alpha}: \alpha < \kappa)$ is a Fraïssé sequence in the category of discrete spaces of cardinality less than κ .
- (2) Then the limit map $\phi_{\kappa} \colon K \to \lim \vec{u}$ has a left inverse, i.e., there is $r \colon \lim \vec{u} \to K$ such that $r \circ \phi_{\kappa} = \operatorname{id}_{K}$.
- (3) The image $\phi_{\kappa}[K] \subseteq U_{\kappa} = \lim \vec{u}$ is nowhere dense.

Corollary (Kubiś, K., Turek)

A κ -compact ultrametric space (K, u) of weight not greater than κ can be embedded into the κ -ultrametric space 2^{κ} as a nowhere dense subset.

Theorem (Kubiś, K., Turek)

If $\eta: K \to 2^{\kappa}$ is an embedding such that $\eta[K]$ is nowhere dense in the κ -ultrametric space 2^{κ} , then $\eta: K \to 2^{\kappa}$ is a \mathfrak{D}_{K}^{w} -generic.

Knaster and Reichbach established the following theorem:

If P and K are closed nowhere dense subsets of the Cantor space 2^{ω} and f is a homeomorphism between P and K, then there exists a homeomorphism between the Cantor space extending f.

Below we have a counterpart of this theorem for the κ -ultrametric space 2^{κ} .

Corollary (Kubiś, K., Turek)

Every homeomorphism of nowhere dense subsets of the κ -ultrametric space 2^{κ} can be extended to an auto-homeomorphism of 2^{κ} .

Corollary (Kubiś, K., Turek)

Every nowhere dense set in the κ -ultrametric space 2^{κ} is a retract.

23 / 25

Refereces

W. Kubiś, A. Kucharski and S. Turek, *On generic topological embeddings*, preprint, arXiv:2310.05043, (2023)

< 47 ▶

< ∃→

Thank You for Your attention!

Andrzej Kucharski

On generic topological embeddings

SETTOP 2024

- 4 ⊒ →

Image: A matrix