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Coloring the infinite

Theorem [Ramsey 1930]

Let X be a countably infinite set.
For any finite coloring of [X ]n there
is an infinite M ⊆ X such that [M ]n

is monochromatic.

Frank P. Ramsey
(1903–1930)
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The infinite is usually not monochromatic

Definition [Kechris, Pestov, Todorčević]

Let S be a structure and A a finite substructure of S.

▶ The big Ramsey degree of A in S is the least t ∈ T such
that for every finite coloring χ : Emb(A,S) → k there is an
isomorphic copy C ⩽ S such that |χ(Emb(A,C))| ⩽ t .

▶ We write T (A,S) = t , or T (A,S) = ∞ if no such t exists.
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The infinite is usually not monochromatic

Ordinals:

▶ T (1, ωα) = 1 for every ordinal α [Fraı̈ssé]

▶ T (1, α) < ∞ for every infinite ordinal α [Fraı̈ssé]

Scattered linear orders:

▶ T (1,A) = 1 for every additively indecomposable A [Laver]

▶ T (1,S) < ∞ for every scattered S [Laver]

Non-scattered linear orders:

▶ Q /−→ (Q)2
2 [Galvin]

▶ T (n,Q) < ∞ for every n ∈ N [Galvin, Laver, Devlin]



Countable linear orders

α . . . a countable ordinal

S . . . a countable linear order

Spec(S) = (T (1,S),T (2,S),T (3,S), . . .)

Theorem [M, Šobot]

Spec(α) is finite if and only if α < ωω.

Theorem [Galvin, Laver, Devlin]

For every non-scattered S: Spec(S) is always finite.

Theorem [Dasilva Barbosa, M, Nenadov]

For scattered S: Spec(S) is finite if and only if rkHausd(S) < ∞.



Monomorphic structures

Definition [Fraı̈ssé]

A structure S is monomorphic if all finite substructures of S of
the same size are isomorphic.

Examples.
▶ linear orders
▶ Hausdorff topological spaces
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Monomorphic structures

Definition [Fraı̈ssé]

A structure S is monomorphic if all finite substructures of S of
the same size are isomorphic.

Examples.
▶ linear orders
▶ Hausdorff topological spaces → [Raghavan, Todorčević]

Theorem [Fraı̈ssé; Pouzet]

A ctble rel struct M = (M, . . .) is monomorphic if and only if it is
quantifier-free defble in some linear order (M, <).

We then say that (M, <) chains M.



Monomorphic structures

M . . . countable monomorphic structure

T (n,M) . . . the big Ramsey degree of the unique
n-element substructure of M

Spec(M) = (T (1,M),T (2,M),T (3,M), . . .)

Theorem [M, Toljić]

Spec(M) is finite if and only if Spec(M,≺) is finite for some
(and thus every) minimal linear order ≺ that chains M.

⇑

Theorem [Fraı̈ssé’s Conjecture; Laver]

The class of all countable linear orders is a WQO under
embeddability.
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Monomorphic decomposition

S = (S, . . .) . . . a relational structure

{Eα : α < κ} . . . a partition of S

Definition [Pouzet, Thiéry]

{Eα : α < κ} is a monomorphic decomposition of S if for all
finite A,B ⩽ S of the same size:

A ∼= B iff |A ∩ Eα| = |B ∩ Eα| for all α < κ.

Theorem [Pouzet, Thiéry]

Every relational structure has a coarsest monomorphic
decomposition which we refer to as minimal.



Structures with finite monomorphic decompositions

S . . . a countable relational structure

{E1, . . . ,Em} . . . a finite monomorphic decomposition of S

S[E ] . . . the substructure of S induced by E ⊆ S

Theorem [M, Toljić]

S has finite big Ramsey degrees if and only if each S[Ei ] does,
1 ⩽ i ⩽ m.

⇑
A product Ramsey statement for linear orders
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A product Ramsey statement for linear orders

L1, . . . , Lm . . . countable linear orders with finite
big Ramsey spectra

Theorem [M, Toljić]

For every choice of n1, . . . ,nm ∈ N there is a t ∈ N such that for
every finite coloring

χ : Emb(n1,L1)× . . .× Emb(nm,Lm) → k

one can find copies Ci ⩽ Li , Ci
∼= Li , 1 ⩽ i ⩽ m, such that∣∣χ(Emb(n1,C1)× . . .× Emb(nm,Cm)

)∣∣ ⩽ t .

In other words, T
(
(n1, . . . ,nm), (L1, . . . ,Lm)

)
< ∞.



Big Ramsey degrees for structures

Some Fraı̈ssé limits with finite big Ramsey degrees:

▶ Q [Galvin, Laver, Devlin]

▶ The Rado graph [Sauer]

▶ The Henson graphs Hn [Dobrinen → SE TTOP 2018]

▶ The generic permutation (Q, <,⊏) [Cameron]

▶ The generic partial order [Hubička]

⇒ non-forsing proof for H3;
⇒ proofs for Q and the Rado graph without

Milliken’s strong subtree theorem
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Big Ramsey degrees for structures

An alternative proof for the generic partial order:

1 Start from the fact that Spec(Q) is finite (CAVEAT!)

2 T ((n,n), (Q,Q)) < ∞ by the Product thm for lin orders

3 The generic permutation (Q, <,⊏) has finite big Ramsey
degrees

4 The generic poset is quantifier-free definable in the generic
permutation: x ≼ y iff x = y ∨ (x < y ∧ x ⊏ y)
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What next?

Dual big Ramsey degrees:

▶ countable limit ordinals → [Kawach, Todorčević]
(modulo a restriction)

▶ graph-like structures → [Džuklevski, M]

What happens in case of:

1 countable ordinals in general?
2 scattered linear orders?
3 non-scattered linear orders and Q in particular?


