Cofinal types of topological groups Stepan Milošević University of Novi Sad, Faculty of Technical Sciences SETTOP 2024 A **Tukey reduction** from a directed set (D, \leq_D) to a directed set (E, \leq_E) is a function $f: D \to E$ mapping **unbounded** subsets of D to **unbounded** subsets of E. We write $D \leq_T E$ when D is **Tukey reducible** to E. We write $D \equiv_T E$ and say that D and E are **Tukey equivalent** whenever $D \leq_T E$ and $E \leq_T D$. ## **Proposition** $D \leq_T E$ iff there is a function $g: E \to D$ mapping **cofinal** subsets of E to **cofinal** subsets of D. #### **Teorema** (Tukey, 1940) Let D and E be a directed sets. $D \equiv_T E$ iff D and E are **isomorphic** to cofinal subsets of a single directed set. ## **Problem** (Tukey, 1940) What are possible cofinal types of directed sets? ## **Proposition** (Tukey, 1940) 1 and ω are the only cofinal types of **countable** directed sets. For a group G, the inverse mapping $In : G \to G$ is defined by the rule $In(x) = x^{-1}$, for each $x \in G$. ## Definicija A topological group G is a group with topology such that multiplication mapping $G \times G \to G$ is continuous, when $G \times G$ si given the product topology, and inverse mapping $In : G \to G$ is also continuous. An easy verification shows that G is a topological group iff the mapping $(x,y) \to xy^{-1}$ of $G \times G$ to G is continuous. #### **Teorema** (Birkhoff-Kakutani) Topological group G is metrizable iff it is first-countable. We can conclude that topological group G is metrizable iff $G \leq_{\mathcal{T}} \omega$. 4 D > 4 B > 4 B > 4 B > 9 Q P ## Tukey order in the class of topological groups #### Lemma Let G be a topological group with the identity e. Let $(\mathcal{N}_1,\supseteq)$ and $(\mathcal{N}_2,\supseteq)$ be local basis of e in G. Then $\mathcal{N}_1\equiv_{\mathcal{T}}\mathcal{N}_2$. ### **Definition** Let G be a topological group with the identity e and D a directed set. We say that $G \leq_T D$ if there is a local base of e in G, say (\mathcal{N},\supseteq) such that $\mathcal{N} \leq_T D$. ### **Definition** Let G be a topological group with the identity e_G and H a topological group with the identity e_H . We say that $G \leq_T H$ if there is a local base of e_G in G, say $(\mathcal{N}_G,\supseteq)$, and a local base of e_H in H, say $(\mathcal{N}_H,\supseteq)$ such that $\mathcal{N}_G \leq_T \mathcal{N}_H$. ## Tukey order in the class of topological groups #### Lemma Let G be a topological group. Then: - a) If H is subgroup of G, then $H \leq_T G$; - **b)** If H is an open subgroup of G, then $G \equiv_T H$; - c) If H is a topological group and $\varphi: G \to H$ an open continuous homomorphism, then $H \leq_T G$. ### **Definition** Let $\{X_i: i \in I\}$ be a collection of topological spaces and let κ be a regular infinite cardinal. We define the κ -box topology on $\prod_{i \in I} X_i$ as the topology given by the base $$\bigg\{\bigcap_{i\in K}\pi_i^{-1}[U_i]:K\in [I]^{<\kappa}, (\forall i\in K)\ U_i \text{ is open in } X_i\bigg\}.$$ ### **Theorem** Let $\{G_i: i \in I\}$ be a collection of topological groups and κ an infinite regular cardinal. For each $i \in I$, let \mathcal{N}_i be a local base of the identity e_i of the group G_i . Then the group $G = \prod_{i \in I} G_i$ with the κ -box topology is a topological group. The local base of the identity of this group is $$\mathcal{N} = \bigg\{ \bigcap_{i \in K} \pi_i^{-1}[B_i] : K \in [I]^{<\kappa}, (\forall i \in K) \ B_i \in \mathcal{N}_i \bigg\}.$$ ## Tukey order in the class of topological groups ## **Example** Let G and H be two topological groups such that $G \not\leq_T H$ and $H \not\leq_T G$. Let H' be the topological group with the same underlying group as H, but with the discrete topology. Let $\phi: G \times H' \to H$ be the natural projection to the second coordinate. Then $G \times H' \equiv_T G$ and ϕ is a continuous homomorphism but $G \times H' \not\leq_T H$ and $H \not\leq_T G \times H'$. ## **Example** Continuous homomorphism doesn't preserve cofinal types of topological groups. Let S_{ω_1} be symmetric group on ω_1 . Let $\mathcal{O}_{\mathcal{T}}$ be the product topology on S_{ω_1} and let \mathcal{O}_{ω_1} be the ω_1 -box topology. Then $(S_{\omega_1},\mathcal{O}_{\mathcal{T}}) \equiv_{\mathcal{T}} [\omega_1]^{<\omega}$ and $(S_{\omega_1},\mathcal{O}_{\omega_1}) \equiv_{\mathcal{T}} \omega_1$ and clearly $\omega_1 <_{\mathcal{T}} [\omega_1]^{<\omega}$. On the other hand $id_{S_{\omega_1}}:(S_{\omega_1},\mathcal{O}_{\omega_1})\to(S_{\omega_1},\mathcal{O}_{\mathcal{T}})$ is a continuous homomorphism. ## Tightness and similar properties ### **Definition** A topological space X is called *Fréchet space* if for every $A \subseteq X$ and $x \in \overline{A}$ there is a sequence $\{x_n : n < \omega\} \subseteq A$ converging to x. ### **Definition** A topological space X is *countably tight* if for every $A \subseteq X$ and every $x \in \overline{A}$ there is a countable set $C \subseteq A$ such that $x \in \overline{C}$. ### **Example** Topological group $G = \{x \in 2^{\omega_1} : |\{\alpha < \omega_1 : x(\alpha) \neq 0\}| < \omega\}$, with the product topology and operation coordinatewise addition modulo 2 is Fréchet and $G \equiv_T [\omega_1]^{<\omega}$. On the other hand, $H=2^{\omega_1}$ with the product topology and the same operation is not countably tight and $H\equiv_{\mathcal{T}} [\omega_1]^{<\omega}$. Thus, Tukey doesn't preserve Fréchet. ## **Tightness and similar properties** #### **Definition** For a topological space X, the *tightness* of X is the minimal cardinal $\kappa \geq \omega$ with the property that for every set $A \subseteq X$ and every point $x \in \overline{A}$, there is $C \subseteq A$ such that $|C| \leq \kappa$ and $x \in \overline{C}$. The tightness of a space X is denoted by t(X). ## Tightness and similar properties #### Lemma (Kuzeljević-M) Let κ, λ be regular infinite cardinals and G a topological group with $\mathsf{t}(\mathsf{G}) = \kappa$ and such that $\mathsf{G} \leq_T \lambda \times \kappa^+$. Then $\mathsf{G} \leq_T \lambda$. ## **Corollary** Let κ be an infinite regular cardinal and G a topological group with $t(G) = \kappa$ and such that $G \leq_T \omega \times \kappa^+$. Then G is metrizable. ## **Corollary** If G is a countably tight topological group and $G \leq_T \omega \times \omega_1$, then G is metrizable. In particular if a countably tight group G is Tukey reducible to ω_1 then it is discrete. ## Metrizability of countably tight groups ### **Definition** We say that a directed set (D, \leq) is strongly basically generated if there is a metric ρ on D such that (D, ρ) is a separable metric space and that for every sequence $\{d_n: n<\omega\}\subseteq D$ converge to some $d\in D$, there is $d^\star\in D$ such that $\rho(d,d^\star)\leq \sup\{\rho(d,d_n): n<\omega\}$ and $d_n\leq d^\star$ for each $n<\omega$. For a topological group G, we say that G is *strongly basically generated* if $G \leq_T D$ for some strongly basically generated directed set D. ## Metrizability of countably tight groups #### **Theorem** (Dow-Feng) Let P = K(M) for some separable metric space M. If X is a compact space with countable tightness and has a P-base, then X is first-countable. #### Theorem (Todorčević) If G is a Fréchet topological group such that $G \leq_T D$, for some basic order D, then G is metrizable. #### **Theorem** (Kuzeljević-M) Suppose that X is regular, locally countably compact, and countably tight topological space. Let $x \in X$ be such that its neighborhood filter \mathcal{F}_x is Tukey reducible to some strongly basically generated directed set D. Then x has a countable local base in X. ## **Corollary** (Kuzeljević - M) Every countably tight, locally countable compact, and strongly basically generated topological group is metrizable. ## **Products** ### **Definition** Let $\{D_i: i \in I\}$ be a collection of partially ordered sets. Suppose that D_i has a minimum 0_i for each $i \in I$. Let κ be an infinite regular cardinal. We define the κ -support product of posets D_i as follows: $$\prod_{i\in I}^{\kappa-\text{supp}} D_i = \left\{ x \in \prod_{i\in I} D_i : |\{i\in I : x_i \neq 0_i\}| < \kappa \right\}.$$ #### Theorem Let κ be an infinte regular cardinal. Let $\{G_i : i \in I\}$ be a collection of topological groups such that $G_i \equiv_T D_i$ where D_i is a directed set with the minimum 0_i , for each $i \in I$. Suppose that $G = \prod_{i \in I} G_i$ with the κ -box topology, and that $D = \prod_{i \in I}^{\kappa - \text{supp}} D_i$. Then $G \equiv_T D$. # **THANK YOU!**