
Weakly o-minimal types

Slavko Moconja

Joint work with Predrag Tanović.
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General setting, notation, terminology

pC,ă, . . . q: a monster model (κ-saturated and strongly κ-homogeneous for some
big enough cardinal κ) of a complete first-order theory T saying that ă is a linear
order.

SxpAq: the space of types, i.e. maximal consistent sets of formulae, in variables x
with parameters from A Ď C.

SppBq: the space of extensions of a type p P SxpAq in SxpBq, where B Ě A.

φpCq: the set of solutions of a formula ϕpxq in C|x|.

ppCq: the set of realizations of a type ppxq in C|x|.

X Ď ppCq is relatively definable if X “ φpCq X ppCq.
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o-minimality and generalizations

Definition
a T is o-minimal if every C-definable subset of C is a finite union of intervals

(sets pa, bq, pa, bs, ra, bq and ra, bs where a ď b P CY t˘8u).

b T is weakly o-minimal if every C-definable subset of C is a finite union of
convex sets.

c T is [weakly] quasi-o-minimal if every C-definable subset of C is a Boolean
combination of H-definable subsets and intervals [convex sets].

o-minimal
quasi-o-minimal

weakly o-minimal
weakly quasi-o-minimalñ

ñ
ñ

ñ

Example

Weakly quasi-o-minimal theories include all (coloured) linear orders.
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Monotonicity Theorems

Theorem (Pillay, Steinhorn)

If ThpC,ă, . . . q is o-minimal, and f : CÑ C is a definable function, then there is
a finite definable convex partition of C such that f is either constant or strictly
monotone on each member of the partition.

Theorem (Macpherson, Marker, Steinhorn)

If ThpC,ă, . . . q is weakly o-minimal, and f : CÑ C is a definable function, then
there is a finite definable convex partition of C such that f is either locally
constant or locally strictly monotone on each member of the partition.
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Weakly o-minimal types and pairs

Definition
a A type p P SpAq is weakly o-minimal if there exists a relatively A-definable

linear order ă on ppCq such that every relatively C-definable subset of ppCq is
a finite union of ă-convex subsets of ppCq.

b If a relatively A-definable linear order ă witnesses that p is weakly o-minimal,
we also say that pp,ăq is a weakly o-minimal pair over A.

Example

If ThpC,ă, . . . q is weakly quasi-o-minimal, then pp,ăq is a weakly o-minimal pair
for every p P S1pAq.
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A characterization

Lemma

If pp,ăq is a weakly o-minimal pair over A, B Ě A and q P SppBq, then pq,ăq is a
weakly o-minimal pair over B. In particular, extensions of weakly o-minimal types
are weakly o-minimal.

Lemma
i If pp,ăq is a weakly o-minimal pair over A, B Ě A and q P SppBq, then qpCq

is a ă-convex subset of ppCq.

ii If p P SpAq and ă is a relatively A-definable linear order on ppCq such that
for every B Ě A and every q P SppBq, qpCq is a ă-convex subset of ppCq,
then pp,ăq is a weakly o-minimal pair.
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On equivalences

For p P SpAq let Ep be the set of all relatively A-definable equivalences on ppCq.

Lemma

If pp,ăq is a weakly o-minimal pair over A, then:

i each E P Ep is ă-convex;

ii pEp,Ďq is a linear order.

Proof of (i). Suppose that a0, b0, a1 |ù p are such that a0 ă b0 ă a1, E pa0, a1q
and ␣E pa0, b0q. Take f P AutpC{Aq such that f pa0q “ a1; set an`1 :“ f panq and
bn`1 “ f pbnq. Then an ă bn ă an`1, E pa0, anq and ␣E pa0, bnq.

pppCq,ăqa0 b0 a1 b1 a2 b2 a3

f f f

f f

So, ra0sE has infinitely many ă-convex parts; a contradiction.
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Defining new orders

Let pX ,ăq be a linear order and E a ă-convex equivalence relation on X . We
define a new linear order ăE on X by:

a ăE b :ô pE pa, bq ^ b ă aq _ p␣E pa, bq ^ a ă bq.

pX ,ăqrasE
a b rcsE

c d

pX ,ăE qrasEb a rcsEd c

If E⃗ “ pE1,E2, . . . ,Enq is a sequence of pairwise Ď-comparable ă-convex
equivalence relations on X , the previous construction can be iterated, and we
define ăE⃗ .

Remark. If pp,ăq is a weakly o-minimal pair over A, and E⃗ P En
p , then ăE⃗ is a

relatively A-definable linear order on ppCq.
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The main technical result

Lemma

If pp,ăq is a weakly o-minimal pair over A, and E⃗ P En
p then pp,ăE⃗ q is a weakly

o-minimal pair over A too.

Proof.

pppCq,ăqC

pppCq,ăE qC

Theorem

If pp,ăq is a weakly o-minimal pair over A and Ÿ a relatively A-definable linear

order on ppCq, then Ÿ “ăE⃗ for some increasing E⃗ P En.

Therefore, for a type p P SpAq, being weakly o-minimal doesn’t depend on the
choice of relatively A-definable linear order on ppCq.
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A corollary

Theorem

ThpC,ă, . . . q is weakly quasi-o-minimal iff every p P S1pHq is weakly o-minimal.

Furthermore, if Ÿ is an H-definable linear order on C, then ThpC,Ÿ, . . . q is
weakly quasi-o-minimal.
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Monotonicity theorems for weakly o-minimal types

Theorem (Weak monotonicity)

Let pp,ăq be a weakly o-minimal pair over A, pD,Ÿq an A-definable linear order,
and f : ppCq Ñ D a relatively A-definable nonconstant function.

i There is E⃗ P En
p such that f is păE⃗ ,Ÿq-increasing (meaning that a ăE⃗ b

implies f paq Ĳ f pbq).

ii There is an increasing sequence F⃗ of Ÿ-convex A-definable equivalences on D
such that f is pă,ŸF⃗ q-increasing.
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Monotonicity theorems for weakly o-minimal types

Under the same assumptions:

Theorem (Local monotonicity)

There is a non-trivial equivalence E P Ep such that f is either constant of strictly
pă,Ÿq-monotone on each E-class.

Theorem (Upper monotonicity)

There is a convex relatively A-definable equivalence E on ppCq, such that
E ‰ ppCq2 and one of the following two conditions holds for all x1, x2 realizing p:

rx1sE ă rx2sE ñ f px1q Ÿ f px2q or rx1sE ă rx2sE ñ f px1q Ź f px2q.
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In weakly o-minimal theories

Theorem

Suppose that ThpC,ă, . . . q is weakly o-minimal, pD,Ÿq is an A-definable linear
order and f : CÑ D is an A-definable function. Then:

i There exists a finite convex A-definable partition of C and an increasing
sequence of A-definable convex equivalence relations E⃗ on C such that f is
păE⃗ ,Ÿq-increasing on each member of the partition.

ii There exists a finite convex A-definable partition of C and a convex
A-definable equivalence relation E on C with finitely many finite classes, such
that f is constant or strictly pă,Ÿq-monotone on each class.
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Thank you!
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