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Ultrametric spaces

Definition
An ultrametric d on a space X is a metric satisfying

d(x, z) ≤ max{d(x, y), d(y, z)}.

A curiosity. This concept was introduced in 1944 by
the algebraic number theorist Marc Krasner while
working on p-adic numbers.

Krasner’s problem (1956)
Characterize the isometry groups of ultrametric spaces.

Remark. A related problem posed by Pestov, asking for a characterization
of all subgroups of isometry groups of ultrametric spaces, was solved by
Lemin and Smirnov in 1986.
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What was known

Given a metric space X, denote its isometry group by Iso(X).

1 If X is a compact ultrametric space, then Iso(X) is isomorphic to a
generalized wreath product, as defined by Holland (Feinberg, 1974).

2 The same is true if X is a spherically complete ultrametric space
(Feinberg-Nosova, 1980).

3 Suppose that X is a W -space, i.e. a Polish ultrametric space
satisfying the following two conditions:

– X is locally non-rigid;
– the homogenous classes of X have exact distances, i.e. for any

two such classes [x] and [y] there are x′ ∈ [x] and y′ ∈ [y]
such that d(x′, y′) = dist([x], [y]).

Then Iso(X) can be described using a natural variant of Holland’s
generalized wreath product (Malicki, 2014).
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Polish metric spaces

If X is a Polish metric space, then Iso(X) is a Polish group when equipped
with the pointwise convergence topology.

Theorem (Gao-Kechris, 2003)

The isometry groups of Polish metric spaces are, up to isomorphism, all
Polish groups.

This leads to the search for similar characterizations for interesting
subclasses of Polish metric spaces:

1 Compact spaces ⇝ all compact Polish groups (Melleray, 2008)
2 Locally compact/σ-compact spaces ⇝ all subgroups of groups of the

form
∏

n∈ω(Sym(ω)⋉Gω
n) for (Gn)n∈ω a sequence of locally

compact Polish groups (Gao-Kechris, 2003)
3 Zero-dimensional locally compact spaces ⇝ all closed subgroups of

Sym(ω) (Gao-Kechris, 2003)
4 Proper (= closed balls are compact) spaces ⇝ all locally compact Polish

groups (Gao-Kechris, 2003 + Malicki-Solecki, 2009)

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 4 / 27



Polish metric spaces

If X is a Polish metric space, then Iso(X) is a Polish group when equipped
with the pointwise convergence topology.

Theorem (Gao-Kechris, 2003)

The isometry groups of Polish metric spaces are, up to isomorphism, all
Polish groups.

This leads to the search for similar characterizations for interesting
subclasses of Polish metric spaces:

1 Compact spaces ⇝ all compact Polish groups (Melleray, 2008)
2 Locally compact/σ-compact spaces ⇝ all subgroups of groups of the

form
∏

n∈ω(Sym(ω)⋉Gω
n) for (Gn)n∈ω a sequence of locally

compact Polish groups (Gao-Kechris, 2003)
3 Zero-dimensional locally compact spaces ⇝ all closed subgroups of

Sym(ω) (Gao-Kechris, 2003)
4 Proper (= closed balls are compact) spaces ⇝ all locally compact Polish

groups (Gao-Kechris, 2003 + Malicki-Solecki, 2009)

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 4 / 27



Polish metric spaces

If X is a Polish metric space, then Iso(X) is a Polish group when equipped
with the pointwise convergence topology.

Theorem (Gao-Kechris, 2003)

The isometry groups of Polish metric spaces are, up to isomorphism, all
Polish groups.

This leads to the search for similar characterizations for interesting
subclasses of Polish metric spaces:

1 Compact spaces ⇝ all compact Polish groups (Melleray, 2008)
2 Locally compact/σ-compact spaces ⇝ all subgroups of groups of the

form
∏

n∈ω(Sym(ω)⋉Gω
n) for (Gn)n∈ω a sequence of locally

compact Polish groups (Gao-Kechris, 2003)
3 Zero-dimensional locally compact spaces ⇝ all closed subgroups of

Sym(ω) (Gao-Kechris, 2003)
4 Proper (= closed balls are compact) spaces ⇝ all locally compact Polish

groups (Gao-Kechris, 2003 + Malicki-Solecki, 2009)

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 4 / 27



Polish metric spaces

If X is a Polish metric space, then Iso(X) is a Polish group when equipped
with the pointwise convergence topology.

Theorem (Gao-Kechris, 2003)

The isometry groups of Polish metric spaces are, up to isomorphism, all
Polish groups.

This leads to the search for similar characterizations for interesting
subclasses of Polish metric spaces:

1 Compact spaces ⇝ all compact Polish groups (Melleray, 2008)

2 Locally compact/σ-compact spaces ⇝ all subgroups of groups of the
form

∏
n∈ω(Sym(ω)⋉Gω

n) for (Gn)n∈ω a sequence of locally
compact Polish groups (Gao-Kechris, 2003)

3 Zero-dimensional locally compact spaces ⇝ all closed subgroups of
Sym(ω) (Gao-Kechris, 2003)

4 Proper (= closed balls are compact) spaces ⇝ all locally compact Polish
groups (Gao-Kechris, 2003 + Malicki-Solecki, 2009)

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 4 / 27



Polish metric spaces

If X is a Polish metric space, then Iso(X) is a Polish group when equipped
with the pointwise convergence topology.

Theorem (Gao-Kechris, 2003)

The isometry groups of Polish metric spaces are, up to isomorphism, all
Polish groups.

This leads to the search for similar characterizations for interesting
subclasses of Polish metric spaces:

1 Compact spaces ⇝ all compact Polish groups (Melleray, 2008)
2 Locally compact/σ-compact spaces ⇝ all subgroups of groups of the

form
∏

n∈ω(Sym(ω)⋉Gω
n) for (Gn)n∈ω a sequence of locally

compact Polish groups (Gao-Kechris, 2003)

3 Zero-dimensional locally compact spaces ⇝ all closed subgroups of
Sym(ω) (Gao-Kechris, 2003)

4 Proper (= closed balls are compact) spaces ⇝ all locally compact Polish
groups (Gao-Kechris, 2003 + Malicki-Solecki, 2009)

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 4 / 27



Polish metric spaces

If X is a Polish metric space, then Iso(X) is a Polish group when equipped
with the pointwise convergence topology.

Theorem (Gao-Kechris, 2003)

The isometry groups of Polish metric spaces are, up to isomorphism, all
Polish groups.

This leads to the search for similar characterizations for interesting
subclasses of Polish metric spaces:

1 Compact spaces ⇝ all compact Polish groups (Melleray, 2008)
2 Locally compact/σ-compact spaces ⇝ all subgroups of groups of the

form
∏

n∈ω(Sym(ω)⋉Gω
n) for (Gn)n∈ω a sequence of locally

compact Polish groups (Gao-Kechris, 2003)
3 Zero-dimensional locally compact spaces ⇝ all closed subgroups of

Sym(ω) (Gao-Kechris, 2003)

4 Proper (= closed balls are compact) spaces ⇝ all locally compact Polish
groups (Gao-Kechris, 2003 + Malicki-Solecki, 2009)

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 4 / 27



Polish metric spaces

If X is a Polish metric space, then Iso(X) is a Polish group when equipped
with the pointwise convergence topology.

Theorem (Gao-Kechris, 2003)

The isometry groups of Polish metric spaces are, up to isomorphism, all
Polish groups.

This leads to the search for similar characterizations for interesting
subclasses of Polish metric spaces:

1 Compact spaces ⇝ all compact Polish groups (Melleray, 2008)
2 Locally compact/σ-compact spaces ⇝ all subgroups of groups of the

form
∏

n∈ω(Sym(ω)⋉Gω
n) for (Gn)n∈ω a sequence of locally

compact Polish groups (Gao-Kechris, 2003)
3 Zero-dimensional locally compact spaces ⇝ all closed subgroups of

Sym(ω) (Gao-Kechris, 2003)
4 Proper (= closed balls are compact) spaces ⇝ all locally compact Polish

groups (Gao-Kechris, 2003 + Malicki-Solecki, 2009)
L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 4 / 27



What for Polish ultrametric spaces?

The following is (half of) Problem 10.10 in Gao-Kechris’ paper:

Krasner’s problem for (subclasses of) Polish ultrametric spaces (2003)
Characterize the isometry groups of Polish (or locally compact) ultrametric
spaces.

Let X be a Polish ultrametric space.
1 Iso(X) is isomorphic to a closed subgroup of Sym(ω) (folklore).

Indeed, Iso(X) ∼= Aut(T ) for some R-tree T ; the converse holds as
well (Gao-Shao, 2011).

2 Iso(X) contains an involution, therefore not all closed subgroups of
Sym(ω) can be realized as isometry groups of Polish ultrametric
spaces (Gao-Kechris, 2003).

3 If Iso(X) is simple, then either Iso(X) is trivial, or Iso(X) ∼= Z2, or
Iso(X) ∼= Sym(ω) (Malicki-Solecki, 2009).

4 If X is Heine-Borel, then Iso(X) is the closure of an increasing union
of compact subgroups, and hence it is amenable (Gao-Kechris, 2003).
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L-trees

Let (L,≤L) be a linear order.

Definition
An L-tree is a partial order (T,≤T ) together with a map levT : T → L
satisfying the following conditions for every t, t′ ∈ T :

1 if t ≤T t′ then levT (t) ≤L levT (t
′);

2 for every ℓ ≥L levT (t) there exists a unique t′′ ∈ T , denoted by t|ℓ,
such that t′′ ≥T t and levT (t

′′) = ℓ (in particular t|levT (t) = t);

3 there exists t′′ ∈ T with t′′ ≥T t, t′, or equivalently: there exists
ℓ ≥L levT (t), levT (t

′) such that t|ℓ = t′|ℓ;
4 if t, t′ ∈ T are ≤T -incomparable, then the set

{ℓ ≥L levT (t), levT (t
′) | t|ℓ ̸= t′|ℓ} has a maximum in L, denoted by

split(t, t′).
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L-trees

Given an L-tree T , let

[T ] = {b ∈ LT | levT (b(ℓ)) = ℓ for every ℓ and
b(ℓ) ≤T b(ℓ′) for every ℓ ≤L ℓ′}

be the body of T , and call its elements branches of T . We say that T is
pruned if for every t ∈ T there is b ∈ [T ] such that b(levT (t)) = t.

An embedding between two L-trees (T,≤T ) and (S,≤S) is an injection
f : T → S such that levS(f(t)) = levT (t) and
t ≤T t′ ⇐⇒ f(t) ≤S f(t′), for all t, t′ ∈ T . An isomorphism is a
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Polish ultrametric spaces and L-trees

Recall that Gao and Kechris asked for a characterization of isometry groups
of all Polish ultrametric spaces, and of the locally compact ones. Actually,
there is no difference between the two problems (and other natural
variants).

Theorem (Camerlo-Marcone-M.)

For every topological group G, the following are equivalent:

1 G ∼= Iso(X) for some Polish ultrametric space X;

2 G ∼= Iso(X) for some perfect locally compact Polish ultrametric space
X;

3 G ∼= Iso(X) for some uniformly discrete Polish ultrametric space X;

4 G ∼= Aut(T ) for some countable pruned L-tree T .
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Polish ultrametric spaces and L-trees

The proof goes by building suitable functors between the various categories
involved, namely:

a categorical full embedding F from Polish ultrametric spaces into
pruned L-trees;
a categorical full embedding G from pruned L-trees into uniformly
discrete Polish ultrametric spaces;
a categorical full embedding U from uniformly discrete Polish
ultrametric spaces into perfect locally compact ones.

Corollary (Camerlo-Marcone-M.)

1 The relation of isometry on the class of perfect locally compact Polish
ultrametric spaces is Borel bi-reducible with graph isomorphism, and
hence S∞-complete.

2 The relation of isometric embeddability on the class of perfect locally
compact Polish ultrametric spaces is invariantly universal, and hence
complete for analytic quasi-orders.
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Generalized wreath products

There are several variants. In each of them, the main ingredients are:

a nonempty partially ordered set ∆ together with a labeling function
N : ∆ → ω + 1 \ {0} : δ 7→ Nδ;
for each δ ∈ ∆, a transitive permutation group Hδ ⊆ Sym(Nδ);

a nonempty family S ⊆ P(∆) of admissible supports, closed under
symmetric differences.

The labeled partial order ⟨∆, N⟩ is called the skeleton of the wreath
product.

For each x ∈
∏

δ∈∆Nδ, let supp(x) = {δ ∈ ∆ | x(δ) ̸= 0} and

S =
{
x ∈

∏
δ∈∆

Nδ | supp(x) ∈ S
}
.

For x ∈ S, δ ∈ ∆, and i ∈ Nδ, let x|δ = x ↾ {γ ∈ ∆ | γ ≥ δ}, and let
xδi ∈ S be defined by xδi (γ) = x(γ) if γ ̸= δ and xδi (γ) = i if γ = δ.

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 10 / 27



Generalized wreath products

There are several variants. In each of them, the main ingredients are:
a nonempty partially ordered set ∆ together with a labeling function
N : ∆ → ω + 1 \ {0} : δ 7→ Nδ;

for each δ ∈ ∆, a transitive permutation group Hδ ⊆ Sym(Nδ);

a nonempty family S ⊆ P(∆) of admissible supports, closed under
symmetric differences.

The labeled partial order ⟨∆, N⟩ is called the skeleton of the wreath
product.

For each x ∈
∏

δ∈∆Nδ, let supp(x) = {δ ∈ ∆ | x(δ) ̸= 0} and

S =
{
x ∈

∏
δ∈∆

Nδ | supp(x) ∈ S
}
.

For x ∈ S, δ ∈ ∆, and i ∈ Nδ, let x|δ = x ↾ {γ ∈ ∆ | γ ≥ δ}, and let
xδi ∈ S be defined by xδi (γ) = x(γ) if γ ̸= δ and xδi (γ) = i if γ = δ.

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 10 / 27



Generalized wreath products

There are several variants. In each of them, the main ingredients are:
a nonempty partially ordered set ∆ together with a labeling function
N : ∆ → ω + 1 \ {0} : δ 7→ Nδ;
for each δ ∈ ∆, a transitive permutation group Hδ ⊆ Sym(Nδ);

a nonempty family S ⊆ P(∆) of admissible supports, closed under
symmetric differences.

The labeled partial order ⟨∆, N⟩ is called the skeleton of the wreath
product.

For each x ∈
∏

δ∈∆Nδ, let supp(x) = {δ ∈ ∆ | x(δ) ̸= 0} and

S =
{
x ∈

∏
δ∈∆

Nδ | supp(x) ∈ S
}
.

For x ∈ S, δ ∈ ∆, and i ∈ Nδ, let x|δ = x ↾ {γ ∈ ∆ | γ ≥ δ}, and let
xδi ∈ S be defined by xδi (γ) = x(γ) if γ ̸= δ and xδi (γ) = i if γ = δ.

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 10 / 27



Generalized wreath products

There are several variants. In each of them, the main ingredients are:
a nonempty partially ordered set ∆ together with a labeling function
N : ∆ → ω + 1 \ {0} : δ 7→ Nδ;
for each δ ∈ ∆, a transitive permutation group Hδ ⊆ Sym(Nδ);

a nonempty family S ⊆ P(∆) of admissible supports, closed under
symmetric differences.

The labeled partial order ⟨∆, N⟩ is called the skeleton of the wreath
product.

For each x ∈
∏

δ∈∆Nδ, let supp(x) = {δ ∈ ∆ | x(δ) ̸= 0} and

S =
{
x ∈

∏
δ∈∆

Nδ | supp(x) ∈ S
}
.

For x ∈ S, δ ∈ ∆, and i ∈ Nδ, let x|δ = x ↾ {γ ∈ ∆ | γ ≥ δ}, and let
xδi ∈ S be defined by xδi (γ) = x(γ) if γ ̸= δ and xδi (γ) = i if γ = δ.

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 10 / 27



Generalized wreath products

There are several variants. In each of them, the main ingredients are:
a nonempty partially ordered set ∆ together with a labeling function
N : ∆ → ω + 1 \ {0} : δ 7→ Nδ;
for each δ ∈ ∆, a transitive permutation group Hδ ⊆ Sym(Nδ);

a nonempty family S ⊆ P(∆) of admissible supports, closed under
symmetric differences.

The labeled partial order ⟨∆, N⟩ is called the skeleton of the wreath
product.

For each x ∈
∏

δ∈∆Nδ, let supp(x) = {δ ∈ ∆ | x(δ) ̸= 0} and

S =
{
x ∈

∏
δ∈∆

Nδ | supp(x) ∈ S
}
.

For x ∈ S, δ ∈ ∆, and i ∈ Nδ, let x|δ = x ↾ {γ ∈ ∆ | γ ≥ δ}, and let
xδi ∈ S be defined by xδi (γ) = x(γ) if γ ̸= δ and xδi (γ) = i if γ = δ.

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 10 / 27



Generalized wreath products

There are several variants. In each of them, the main ingredients are:
a nonempty partially ordered set ∆ together with a labeling function
N : ∆ → ω + 1 \ {0} : δ 7→ Nδ;
for each δ ∈ ∆, a transitive permutation group Hδ ⊆ Sym(Nδ);

a nonempty family S ⊆ P(∆) of admissible supports, closed under
symmetric differences.

The labeled partial order ⟨∆, N⟩ is called the skeleton of the wreath
product.

For each x ∈
∏

δ∈∆Nδ, let supp(x) = {δ ∈ ∆ | x(δ) ̸= 0} and

S =
{
x ∈

∏
δ∈∆

Nδ | supp(x) ∈ S
}
.

For x ∈ S, δ ∈ ∆, and i ∈ Nδ, let x|δ = x ↾ {γ ∈ ∆ | γ ≥ δ}, and let
xδi ∈ S be defined by xδi (γ) = x(γ) if γ ̸= δ and xδi (γ) = i if γ = δ.

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 10 / 27



Generalized wreath products

There are several variants. In each of them, the main ingredients are:
a nonempty partially ordered set ∆ together with a labeling function
N : ∆ → ω + 1 \ {0} : δ 7→ Nδ;
for each δ ∈ ∆, a transitive permutation group Hδ ⊆ Sym(Nδ);

a nonempty family S ⊆ P(∆) of admissible supports, closed under
symmetric differences.

The labeled partial order ⟨∆, N⟩ is called the skeleton of the wreath
product.

For each x ∈
∏

δ∈∆Nδ, let supp(x) = {δ ∈ ∆ | x(δ) ̸= 0} and

S =
{
x ∈

∏
δ∈∆

Nδ | supp(x) ∈ S
}
.

For x ∈ S, δ ∈ ∆, and i ∈ Nδ, let x|δ = x ↾ {γ ∈ ∆ | γ ≥ δ},

and let
xδi ∈ S be defined by xδi (γ) = x(γ) if γ ̸= δ and xδi (γ) = i if γ = δ.

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 10 / 27



Generalized wreath products

There are several variants. In each of them, the main ingredients are:
a nonempty partially ordered set ∆ together with a labeling function
N : ∆ → ω + 1 \ {0} : δ 7→ Nδ;
for each δ ∈ ∆, a transitive permutation group Hδ ⊆ Sym(Nδ);

a nonempty family S ⊆ P(∆) of admissible supports, closed under
symmetric differences.

The labeled partial order ⟨∆, N⟩ is called the skeleton of the wreath
product.

For each x ∈
∏

δ∈∆Nδ, let supp(x) = {δ ∈ ∆ | x(δ) ̸= 0} and

S =
{
x ∈

∏
δ∈∆

Nδ | supp(x) ∈ S
}
.

For x ∈ S, δ ∈ ∆, and i ∈ Nδ, let x|δ = x ↾ {γ ∈ ∆ | γ ≥ δ}, and let
xδi ∈ S be defined by xδi (γ) = x(γ) if γ ̸= δ and xδi (γ) = i if γ = δ.

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 10 / 27



Generalized wreath products

Definition
The generalized wreath product

WrSδ∈∆Hδ

is the group of all the permutations g ∈ Sym(S) of S satisfying the
following two conditions, for all x, y ∈ S and δ ∈ ∆:

1 if x|δ = y|δ, then g(x)|δ = g(y)|δ;
2 the map i 7→ g(xδi )(δ) is a permutation of Nδ belonging to Hδ.

Examples:
If ∆ = 2 and S = P(∆), then WrSδ∈∆Hδ = H0 Wr H1.
If ∆ is an antichain and S = P(∆), then WrSδ∈∆Hδ =

∏
δ∈∆Hδ.

If ∆ is an antichain and S = Fin, then WrSδ∈∆Hδ =
⊕

δ∈∆Hδ.
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Generalized wreath products

Hall (1962): ∆ linear and S = Fin

A curiosity. Hall’s definition was inspired by the presentation of the
wreath product given by Krasner to prove the Krasner-Kaloujnine
universal embedding theorem (1951).

Holland (1969): ∆ arbitrary and S = Max = the collection of sets which
do not contain infinite ascending chains

Malicki (2014): ∆ arbitrary and S = UM = the collection of sets in Max
whose infinite descending chains have no lower bound in ∆.

We add a fourth option: ∆ arbitrary and S = LF, where

A ∈ LF ⇐⇒ A ∩ {γ ∈ ∆ | γ ≥ δ} ∈ Fin for all δ ∈ ∆.

Clearly
Fin ⊆ LF ⊆ UM ⊆ Max,

and UM = LF when ∆ is (the underlying order of) an L-tree.
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whose infinite descending chains have no lower bound in ∆.

We add a fourth option: ∆ arbitrary and S = LF, where

A ∈ LF ⇐⇒ A ∩ {γ ∈ ∆ | γ ≥ δ} ∈ Fin for all δ ∈ ∆.

Clearly
Fin ⊆ LF ⊆ UM ⊆ Max,

and UM = LF when ∆ is (the underlying order of) an L-tree.
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Generalized wreath products as topological groups

We can equip each generalized wreath product WrSδ∈∆Hδ with the (group)
topology whose neighborhood system for the identity is generated by the
sets of the form

Ux,γ =
{
g ∈ WrSδ∈∆Hδ | g(x)|γ = x|γ

}
,

where x ∈ S and γ ∈ ∆.

It is not difficult to verify that the topology of WrSδ∈∆Hδ is Hausdorff. If
|∆| ≤ ℵ0 and S ⊆ LF, then this topology is second-countable, and hence
metrizable by the Birkhoff-Kakutani theorem.

Theorem (Camerlo-Marcone-M.)

If |∆| ≤ ℵ0 and each Hδ is a closed transitive subgroup of Sym(Nδ), then

WrLFδ∈∆Hδ

is isomorphic to a closed subgroup of Sym(ω), and it is thus a Polish group.
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The homogeneous case

A metric space X is homogeneous if for every x, y ∈ X there is
φ ∈ Iso(X) such that φ(x) = y.

In the realm of L-trees, this translates to: T is homogeneous if for every
t, s ∈ T with levT (t) = levT (s) there is φ ∈ Aut(T ) such that φ(t) = s.

Theorem (Camerlo-Marcone-M.)

For every topological group G, the following are equivalent:

1 G ∼= Iso(X) for some homogeneous Polish ultrametric space X;

2 G ∼= Aut(T ) for some countable homogeneous pruned L-tree T ;

3 G ∼= WrLFδ∈∆ Sym(Nδ), for ∆ a countable linear order.
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The homogeneous case

The proof goes as follows:
The functor F from Polish ultrametric spaces to L-trees specializes to
a functor preserving homogeneity. This proves 1 ⇒ 2 .

To each pruned L-tree T , we can associate its condensed tree ∆(T ):
this is the quotient of T with respect to the equivalence relation

t ∼ s ⇐⇒ φ(t) = s for some φ ∈ Aut(T ),

where for δ, δ′ ∈ ∆(T ) we set lev∆(T )(δ) = lev(t) for some
(equivalently, any) t ∈ δ, and δ ≤∆(T ) δ

′ ⇐⇒ t ≤T t′ for some t ∈ δ
and t′ ∈ δ′.
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The homogeneous case

If T is homogeneous, then ∆(T ) is a linear order.

Using a quite
involved labeling procedure, one can show that

Aut(T ) ∼= WrLFδ∈∆(T ) Sym(NT
δ ),

where for δ = [t] we set

NT
δ = {t′ ∼ t | t′ = t or split(t, t′) = levT (t)}.

This proves 2 ⇒ 3 .
For 3 ⇒ 1 , there is a natural way to equip the domain S of
WrLFδ∈∆ Sym(Nδ) with a complete ultrametric d so that

Iso(S, d) = WrLFδ∈∆ Sym(Nδ).

This concludes the proof.
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The homogeneous case

An interesting subclass of homogeneous Polish ultrametric spaces is
constituted by the discrete ones: by homogeneity, this is the same as
uniform discreteness.

Theorem (Camerlo-Marcone-M.)

For every topological group G, the following are equivalent:

1 G ∼= Iso(X) for some (uniformly) discrete homogeneous Polish
ultrametric space X;

2 G ∼= Aut(T ) for some countable homogeneous pruned L-tree T , for L
a linear order with a minimum;

3 G ∼= WrFinδ∈∆ Sym(Nδ) for some countable linear order ∆.

The latter is just Hall’s generalized wreath product restricted to countable
objects!
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More homogeneous classes

Recall Malicki’s result (2014): If X is locally non-rigid and its homogeneous
classes have exact distances, then Iso(X) is of the form WrUM

δ∈∆ Sym(Nδ).

This suggests that the requirement of homogeneous classes having exact
distances might play some role when the space is not homogeneous, i.e. it
has more than one homogeneous class.

In the context of L-trees, such requirement can be translated to:
(⋆) For every ℓ ∈ L and every t̄, t ∈ Levℓ(T ), if for every ℓ′ >L ℓ there is

t′ ∼ t such that t′|ℓ′ = t̄|ℓ′ , then there is t′′ ∼ t such that t′′|ℓ′ = t̄|ℓ′
for all ℓ′ >L ℓ.
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More homogeneous classes

Theorem (Camerlo-Marcone-M.)

For every topological group G, the following are equivalent:

1 G ∼= Iso(X) for some Polish ultrametric space X whose homogeneous
classes have exact distances;

2 G ∼= Iso(X) for some perfect locally compact Polish ultrametric space
X whose homogeneous classes have exact distances;

3 G ∼= Iso(X) for some uniformly discrete Polish ultrametric space X
whose homogeneous classes have exact distances;

4 G ∼= Aut(T ) for some countable pruned special (= ∆(T ) is an L-tree as
well) L-tree T satisfying (⋆); if desired, we can also require that L has
a minimum;

5 G ∼= WrLFδ∈∆ Sym(Nδ) = WrUM
δ∈∆ Sym(Nδ), for ∆ the underlying order

of some L-tree.

This is optimal: it strengthens Malicki’s result and provides its converse.
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More homogeneous classes

A few words on the proof:

The equivalence among conditions 1 – 4 follows from the fact that
the functors F, G, and U specialize to functors that preserve the extra
requirements (“exact distances” and condition (⋆), respectively).
The implication 4 ⇒ 5 is an elaboration of the argument used in the
homogeneous case. In particular, ∆ = ∆(T ) is again the condensed
tree of T , which now is just a partial order; the requirement on “exact
distances” ensures that ∆(T ) is again an L-tree.
To conclude the proof, this time we prove 5 ⇒ 4 . This is done by
“inverting” the process in the previous item, exploiting the hypothesis
that ∆ is already an L-tree and the fact that we use S = LF.

L. Motto Ros (Turin, Italy) Isometry groups of ultrametric spaces Novi Sad, 20.8.2024 20 / 27



More homogeneous classes

A few words on the proof:
The equivalence among conditions 1 – 4 follows from the fact that
the functors F, G, and U specialize to functors that preserve the extra
requirements (“exact distances” and condition (⋆), respectively).

The implication 4 ⇒ 5 is an elaboration of the argument used in the
homogeneous case. In particular, ∆ = ∆(T ) is again the condensed
tree of T , which now is just a partial order; the requirement on “exact
distances” ensures that ∆(T ) is again an L-tree.
To conclude the proof, this time we prove 5 ⇒ 4 . This is done by
“inverting” the process in the previous item, exploiting the hypothesis
that ∆ is already an L-tree and the fact that we use S = LF.
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Back to wreath products

To cover the general case, we further generalize the wreath products
appearing in the previous theorems. There are two key observations:

For every x ∈
∏

δ∈∆Nδ, we have supp(x) ∈ LF (i.e. x is in the
domain S of the wreath product) iff x|δ has finite support for every
δ ∈ ∆. For δ ∈ ∆, let Yδ =

{
y ∈

∏
γ≥δ Nγ | supp(y) is finite

}
.

By the first condition in the definition of the wreath product

1 if x|δ = y|δ, then g(x)|δ = g(y)|δ,

every g ∈ WrLFδ∈∆Hδ induces corresponding “local” maps gδ : Yδ → Yδ,
for every δ ∈ ∆. By the second condition

2 the map i 7→ g(xδ
i )(δ) is a permutation of Nδ belonging to Hδ,

the maps gδ are permutations of Yδ which commute with the
restriction operations Yδ → Yγ : y 7→ y|γ .
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Back to wreath products

Definition
Let ⟨∆, N⟩ be a skeleton, and let (Hδ)δ∈∆ be a family of transitive
permutation groups over the corresponding sets Nδ. We denote by

W̃r
LF

δ∈∆Hδ

the subgroup of
∏

δ∈∆ Sym(Yδ) consisting of those (hδ)δ∈∆ satisfying the
following conditions, for every δ ∈ ∆ and y ∈ Yδ:

1 hγ(y|γ) = hδ(y)|γ for every γ ≥ δ;

2 the map i 7→ hδ(y
δ
i )(δ) is a permutation of Nδ belonging to Hδ.

Theorem (Camerlo-Marcone-M.)

WrLFδ∈∆Hδ
∼= W̃r

LF

δ∈∆Hδ
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Projective wreath products

The idea is to replace the restriction operations Yδ → Yγ : y 7→ y|γ with
arbitrary systems of projections.

Definition
A system of projections (over a skeleton ⟨∆, N⟩) is a family
π = (πδγ)γ≥δ of surjective maps πδγ : Yδ → Yγ such that for all y, y′ ∈ Yδ
and β ≥ γ ≥ δ

1 πδγ(y) = πδγ(y
′) if and only if y|γ = y′|γ ;

2 πγβ ◦ πδγ = πδβ .
(It follows that each πδδ is the identity on Yδ.)
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The general case (hopefully...)

Theorem (Camerlo-Marcone-M.)

For every topological group G, the following are equivalent:

1 G ∼= Iso(X) for some Polish ultrametric space X;

2 G ∼= Iso(X) for some perfect locally compact Polish ultrametric space
X;

3 G ∼= Iso(X) for some uniformly discrete Polish ultrametric space X;

4 G ∼= Aut(T ) for some countable pruned L-tree T ; if desired, we can
also require that L has a minimum;

5 G ∼= W̃r
LF,π

δ∈∆ Sym(Nδ), for ∆ the underlying order of some L-tree and
π some system of projections over the skeleton ⟨∆, N⟩.
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Summing up...

Isometry groups Automorphism groups Wreath products

discrete
homogeneous

homogeneous L-trees,
L with a minimum

WrFinδ∈∆ Sym(Nδ),
with ∆ linear

homogeneous homogeneous L-trees Wr
LF/UM
δ∈∆ Sym(Nδ),
with ∆ linear

homog. classes with
exact distances 1

special L-trees
with property (⋆)

Wr
LF/UM
δ∈∆ Sym(Nδ),

with ∆ an L-tree

all

L-trees
W̃r

LF,π

δ∈∆ Sym(Nδ),
with ∆ an L-tree

(perfect)
locally compact

(uniformly) discrete

1Here we can further add either “perfect locally compact”, or “uniformly discrete”.
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Future work

1 Find analogous characterizations for other classes of Polish ultrametric
spaces: compact, proper, Heine-Borel, and so on.

2 Study (universality) properties of projective wreath products.
3 Perform a thorough comparison among the various kinds of wreath

products.
4 Find applications. For example, we expect that our analysis will enable

us to reprove and generalize some existing structural results:
For which Polish ultrametric spaces X is the conjugacy equivalence
relation on Iso(X) Borel bi-reducible with graph isomorphism?
Extend to all Polish ultrametric spaces, or at least to those having
homogeneous classes with exact distances, Malicki’s characterization of
the class of W -spaces whose isometry group has uncountable strong
cofinality.
Determine when the isometry group of a Polish ultrametric space is
amenable.

Thank you for your attention!
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