Intermediate models and Kinna-Wagner degrees

J. Schilhan

University of Leeds

SETTOP 2024, Novi Sad

Theorem (Intermediate Model Theorem, Vopěnka-Grigorieff 70's)

Let $V \subseteq M \subseteq V[G]$ be transitive models of ZFC, $V[G]$ a forcing extension of V. Then M is a forcing extension of V.

Theorem (Intermediate Model Theorem, Vopěnka-Grigorieff 70's)

Let $V \subseteq M \subseteq V[G]$ be transitive models of ZFC, $V[G]$ a forcing extension of V. Then M is a forcing extension of V.

Of course not every extension is a forcing extension.

Example

 $L[0^{\#}]$ is not a forcing extension of L. Many class forcing extensions of L are not (set) forcing extensions.

Theorem (Intermediate Model Theorem, Vopěnka-Grigorieff 70's)

Let $V \subseteq M \subseteq V[G]$ be transitive models of ZFC, $V[G]$ a forcing extension of V. Then M is a forcing extension of V.

Of course not every extension is a forcing extension.

Example

 $L[0^{\#}]$ is not a forcing extension of L. Many class forcing extensions of L are not (set) forcing extensions.

But remarkably:

Theorem (Vopěnka '72)

Any set of ordinals $\mathsf{x} \in \mathsf{V}$ is generic over $\mathrm{HOD}^{\mathsf{V}}$.

What if we consider models of ZF?

Question

Let $V \subseteq M \subseteq V[G]$ be models of ZF, $V[G]$ a forcing extension of V. Then M is a forcing extension of V ?

What if we consider models of ZF?

Question

Let $V \subset M \subset V[G]$ be models of ZF, $V[G]$ a forcing extension of V. Then M is a forcing extension of V ?

No.

Example (First Cohen Model)

Let $L \subseteq M = L({c_n : n \in \omega}) \subseteq L[{c_n : n \in \omega}]$, where $\langle c_n : n \in \omega \rangle$ is a generic sequence of Cohen reals. M does not satisfy choice, so can't be a forcing extension of L.

A technique to construct and analyse particular intermediate models of ZF is symmetric extensions.

Definition

A symmetric system is a triple $\mathcal{S} = (\mathbb{P}, \mathcal{G}, \mathcal{F})$ where $\mathbb P$ is a forcing notion, G is a group of automorphisms on $\mathbb P$ and $\mathcal F$ is a normal filter of subgroups of $\mathcal G$.

A technique to construct and analyse particular intermediate models of ZF is symmetric extensions.

Definition

A symmetric system is a triple $\mathcal{S} = (\mathbb{P}, \mathcal{G}, \mathcal{F})$ where $\mathbb P$ is a forcing notion, G is a group of automorphisms on $\mathbb P$ and $\mathcal F$ is a normal filter of subgroups of $\mathcal G$.

Automorphisms π of $\mathbb P$ can be extended naturally to $\mathbb P$ -names by letting

$$
\pi(\dot x)=\{(\pi(\rho),\pi(\dot y)):(\rho,\dot y)\in\dot x\}.
$$

Definition

A P-name \dot{x} is S-symmetric if

$$
\{\pi\in\mathcal{G}:\pi(x)=x\}\in\mathcal{F}.
$$

We call \dot{x} an S-name or write $\dot{x} \in HS_{\mathcal{S}}$ if \dot{x} is hereditarily S-symmetric.

Definition

A P-name \dot{x} is S-symmetric if

$$
\{\pi\in\mathcal{G}:\pi(x)=x\}\in\mathcal{F}.
$$

We call \dot{x} an S-name or write $\dot{x} \in HS_{\mathcal{S}}$ if \dot{x} is hereditarily S-symmetric.

When G is a filter on $\mathbb P$ we can build a model

$$
V[G]_{\mathcal{S}} = \{ \dot{x}^G : \dot{x} \in HS_{\mathcal{S}} \}.
$$

Definition

A P-name \dot{x} is S-symmetric if

$$
\{\pi\in\mathcal{G}:\pi(x)=x\}\in\mathcal{F}.
$$

We call \dot{x} an S-name or write $\dot{x} \in HS_{\delta}$ if \dot{x} is hereditarily S-symmetric.

When G is a filter on $\mathbb P$ we can build a model

$$
V[G]_{\mathcal{S}}=\{x^G: x\in HS_{\mathcal{S}}\}.
$$

Theorem

Let G be \mathbb{P} -generic over V. Then $V[G]_{\mathcal{S}} \models$ ZF.

It turns out that less than $\mathbb P$ -genericity is sufficient:

Definition

Let $G \subseteq \mathbb{P}$ be a filter. Then G is S-generic, or symmetrically generic over V, if $G \cap D \neq \emptyset$, for every dense $D \in V$ so that $\{\pi \in \mathcal{G} : \pi''D = D\} \in \mathcal{F}.$

It turns out that less than \mathbb{P} -genericity is sufficient:

Definition

Let $G \subseteq \mathbb{P}$ be a filter. Then G is S-generic, or symmetrically generic over V, if $G \cap D \neq \emptyset$, for every dense $D \in V$ so that $\{\pi \in \mathcal{G} : \pi''D = D\} \in \mathcal{F}.$

Theorem (Karagila, S.)

Let H be S-generic over V. Then $V[H]_{\mathcal{S}} \models$ ZF. In fact, for any $p \in H$ there is a $\mathbb P$ -generic G over V with $p \in G$ and so that $V[H]_S = V[G]_S$.

Symmetric extensions are really a generalisation of forcing extensions.

Example

Let $\mathbb P$ be a forcing notion. Then $\mathcal S = (\mathbb P, \{\text{id}\}, \{\{\text{id}\}\})$ is a symmetric system. G is S -generic iff G is $\mathbb P$ -generic and $V[G]_{\mathcal{S}} = V[G]$.

Symmetric extensions are really a generalisation of forcing extensions.

Example

Let $\mathbb P$ be a forcing notion. Then $\mathcal S = (\mathbb P, \{\text{id}\}, \{\{\text{id}\}\})$ is a symmetric system. G is S-generic iff G is $\mathbb P$ -generic and $V[G]_S = V[G]$.

A stupid example.

Example

Let $S = (\mathbb{C}, \text{Aut}(\mathbb{C}), \{\text{Aut}(\mathbb{C})\})$. Then $0^{\#}$ corresponds to an S-generic filter, but of course $V[0^{\#}]_S = V$.

Symmetric systems can be iterated:

Definition (Karagila, S.)

Let S be a symmetric system, \dot{T} an S-name for a symmetric system. Then we define $S * \mathcal{T}$ as ...

We can do finite, countable support iterations ...

Symmetric systems can be iterated:

Definition (Karagila, S.)

Let S be a symmetric system, $\mathcal T$ an S-name for a symmetric system. Then we define $S * T$ as ...

We can do finite, countable support iterations ... There are quotients:

Theorem (Karagila, S.)

Let $\mathcal{S}_0 \lessdot \mathcal{S}_1$, there there is an \mathcal{S}_0 -name $\mathcal{S}_1/\mathcal{S}_0$ so that $\mathcal{S}_0 * \mathcal{S}_1/\mathcal{S}_0$ is equivalent to S_1 .

A particular example is $\mathcal{S} = (\mathbb{P}, \mathcal{G}, \mathcal{F}) \leq (\mathbb{P}, \mathcal{G}, \langle \{\text{id}\}\rangle)$. Then we also write \mathbb{P}/\mathcal{S} for the quotient (which is a forcing notion).

A particular example is $\mathcal{S} = (\mathbb{P}, \mathcal{G}, \mathcal{F}) \leq (\mathbb{P}, \mathcal{G}, \langle \{\text{id}\}\rangle)$. Then we also write \mathbb{P}/\mathcal{S} for the quotient (which is a forcing notion).

Theorem (Grigorieff, Karagila-S.)

Let G be S-generic over V. Then $V[G]_S = V(\mathbb{P}/S)$.

A particular example is $\mathcal{S} = (\mathbb{P}, \mathcal{G}, \mathcal{F}) \leq (\mathbb{P}, \mathcal{G}, \langle \{\text{id}\}\rangle)$. Then we also write \mathbb{P}/\mathcal{S} for the quotient (which is a forcing notion).

Theorem (Grigorieff, Karagila-S.)

Let G be S-generic over V. Then $V[G]_S = V(\mathbb{P}/S)$.

- $V[G]$ is a forcing extension of $V[G]_S$ by \mathbb{P}/S .

A particular example is $\mathcal{S} = (\mathbb{P}, \mathcal{G}, \mathcal{F}) \leq (\mathbb{P}, \mathcal{G}, \langle \{\text{id}\}\rangle)$. Then we also write \mathbb{P}/\mathcal{S} for the quotient (which is a forcing notion).

Theorem (Grigorieff, Karagila-S.)

Let G be S-generic over V. Then $V[G]_S = V(\mathbb{P}/S)$.

- $V[G]$ is a forcing extension of $V[G]_S$ by \mathbb{P}/S .

- Moreover any $\mathbb{P}/\mathcal{S}\text{-extension of }\mathcal{V}[G]_{\mathcal{S}_0}$ is of the form $\mathcal{V}[H],$ where H is \mathbb{P} -generic over V and

$$
V[G]_{\mathcal{S}}=V[H]_{\mathcal{S}}.
$$

Recall that $V(x)$ is the smallest transitive inner model containing x as an element.

Theorem (Corollary of Grigorieff's work '75)

Let $V \subseteq M$ be models of ZF. Then the following are equivalent:

- \blacksquare M is a symmetric extension of V,
- 2 $M = V(x)$ where x is an element of some forcing extension of V_{\odot}

Recall that $V(x)$ is the smallest transitive inner model containing x as an element.

Theorem (Corollary of Grigorieff's work '75)

Let $V \subseteq M$ be models of ZF. Then the following are equivalent:

$$
\blacksquare
$$
 M is a symmetric extension of V ,

2 $M = V(x)$ where x is an element of some forcing extension of V_{\odot}

In particular, the First Cohen Model $L(\lbrace c_n : n \in \omega \rbrace)$ is a symmetric extension of L.

Back to intermediate models

Question

Let $V \subseteq M \subseteq V[G]$ be models of ZF, $V[G]$ a forcing extension of V. Then M is a forcing symmetric extension of V ?

Back to intermediate models

Question

Let $V \subseteq M \subseteq V[G]$ be models of ZF, $V[G]$ a forcing extension of V. Then M is a forcing symmetric extension of V ?

No, but this is far less trivial and was unknown for a long time.

Bristol models

Definition

A Bristol model M is an intermediate model $V \subseteq M \subseteq V[G]$ that is not of the form $V(x)$ for any set x. In other words, M is not a symmetric extension of V.

Bristol models

Definition

A Bristol model M is an intermediate model $V \subseteq M \subseteq V[G]$ that is not of the form $V(x)$ for any set x. In other words, M is not a symmetric extension of V.

Theorem (Bristol Workshop 2011, Karagila 2017)

There is a Bristol model M, $L \subseteq M \subseteq L[c]$, where c is a Cohen real over L.

Note that each $L(M \cap V_\alpha)$ is a symmetric extension of L and that there is a proper class of such intermediate models. At the same time, there are only set many models of the form $L[c]_S$.

Bristol models

While $L(M \cap V_{\alpha})$ is of the form $L[G]_{S}$ for some system S and a generic G, there is no reason to believe that $G = c$ or that G is even Cohen generic over L.

 $\mathbb{P} \leq \mathbb{C} * \text{Coll}(\dots)$, $\mathcal T$ completely forgets about the Coll part while fixing the $\mathbb C$ part, $\mathcal S$ on the other hand uses the Coll part to have particular S-names even if they are forcing equivalent to $\mathbb C$ -names What is the reason behind M not being a symmetric extension?

Definition

KWP $_{\alpha}$ says that every set injects into $\mathcal{P}^{\alpha}({\rm Ord}).$ KWP says that there is $\alpha \in \text{Ord}$ so that KWP_{α}.

What is the reason behind M not being a symmetric extension?

Definition

KWP $_{\alpha}$ says that every set injects into $\mathcal{P}^{\alpha}({\rm Ord}).$ KWP says that there is $\alpha \in \text{Ord}$ so that KWP_{α}.

Definition

The Kinna-Wagner degree of a model M is the least α such that $M \models$ KWP_{α}, if it exists. Otherwise we say that M has unbounded Kinna-Wagner degree.

It turns out that for many considerations a dual notion is more useful:

Definition

 KWP^*_α says that $\mathcal{P}^\alpha(\mathrm{Ord})$ surjects onto every set.

It turns out that for many considerations a dual notion is more useful:

Definition

 KWP^*_α says that $\mathcal{P}^\alpha(\mathrm{Ord})$ surjects onto every set.

Lemma

 $\mathsf{KWP}_\alpha \to \mathsf{KWP}_\alpha^* \to \mathsf{KWP}_{\alpha+1}.$ For limit α , $\mathsf{KWP}_\alpha \leftrightarrow \mathsf{KWP}_\alpha^*.$

It turns out that for many considerations a dual notion is more useful:

Definition

 KWP^*_α says that $\mathcal{P}^\alpha(\mathrm{Ord})$ surjects onto every set.

Lemma

 $\mathsf{KWP}_\alpha \to \mathsf{KWP}_\alpha^* \to \mathsf{KWP}_{\alpha+1}.$ For limit α , $\mathsf{KWP}_\alpha \leftrightarrow \mathsf{KWP}_\alpha^*.$

Theorem (Generalized Balcar-Vopěnka)

Let $M, N \models$ KWP^{*}_{α} be transitive models with $\mathcal{P}^{\alpha+1}(\mathrm{Ord})^{\mathcal{M}}=\mathcal{P}^{\alpha+1}(\mathrm{Ord})^{\mathcal{N}}.$ Then $\mathcal{M}=\mathcal{N}.$

Theorem

The statement KWP^*_α is invariant under forcing.

Theorem

The statement KWP^*_α is invariant under forcing. Both KWP and ¬KWP are invariant under symmetric extensions.

In Hamkins' model logic of forcing terminology KWP^*_α is a button. These principles give a nice stratification of ZF models.

The Bristol model $L \subseteq M \subseteq L[c]$ does not satisfy KWP but L does. So M is not a symmetric extension of L.

The Bristol model $L \subseteq M \subseteq L[c]$ does not satisfy KWP but L does. So M is not a symmetric extension of L .

Conjecture (Karagila '17)

Let $V \subseteq M \subseteq V[G]$, where $V[G]$ is a forcing extension of V and $M \models$ KWP. Then M is a symmetric extension of V.

Do Bristol models necessarily fail KWP?

Recently a more general construction of Bristol models has been found:

Theorem (Hayut, Shani '24)

Let $V \models$ ZF be arbitrary and c a Cohen real over V. Then there is $V \subseteq N \subseteq V[c]$ so that

$$
N \neq V(x) \text{ for every } x \in V[c],
$$

 $2 N \models \neg KWP,$

3 AC cannot be forced over N $(M \models \neg SVC)$.

Note that 2 implies 3, but 3 implies 2 is not true in general.

Relative Kinna-Wagner degrees

Definition

Let $V \subseteq M$. Then we say that M satisfies $KWP_\alpha(V)$ if for every set $x\in M$ there is an injection in M from x into some $\mathcal{P}^\alpha(V_\eta).$

Relative Kinna-Wagner degrees

Definition

Let $V \subseteq M$. Then we say that M satisfies $KWP_{\alpha}(V)$ if for every set $x\in M$ there is an injection in M from x into some $\mathcal{P}^\alpha(V_\eta).$ The Kinna-Wagner degree of M over V is the least α so that M satisfies $KWP_{\alpha}(V)$.

Otherwise, we say that M has unbounded Kinna-Wagner degree over V.

Relative Kinna-Wagner degrees

Definition

Let $V \subseteq M$. Then we say that M satisfies $KWP_{\alpha}(V)$ if for every set $x\in M$ there is an injection in M from x into some $\mathcal{P}^\alpha(V_\eta).$

The Kinna-Wagner degree of M over V is the least α so that M satisfies $KWP_{\alpha}(V)$.

Otherwise, we say that M has unbounded Kinna-Wagner degree over V.

Similarly we define $\mathsf{KWP}^*_\alpha(V).$

Note that when $\mathcal{V} \models$ ZFC, then $\mathsf{KWP}_\alpha(\mathcal{V})/\mathsf{KWP}_\alpha^*(\mathcal{V})$ is just the same as $\mathsf{KWP}_\alpha/\mathsf{KWP}_\alpha^*$.

Lemma

Suppose $x \subseteq P^{\alpha}(V_{\eta})$, for some $\eta \in \text{Ord.}$ Then $V(x)$ satisfies $KWP^*_{\alpha}(V)$.

In particular, any model of the form $V(x)$ for a set x has bounded Kinna-Wagner degree over V.

Theorem (Karagila-S. '24)

Let $V \subseteq M \subseteq V[G]$, $V[G]$ a forcing extension of V. Then the following are equivalent:

- \blacksquare $M = V(x)$ for some $x \in M$, i.e. M is a symmetric extension of V,
- 2 M has bounded Kinna-Wagner degree over V,
- 3 there is a forcing extension of M satisfying $KWP_0^*(V)$.

Theorem (Karagila-S. '24)

Let $V \subseteq M \subseteq V[G]$, $V[G]$ a forcing extension of V. Then the following are equivalent:

- \blacksquare $M = V(x)$ for some $x \in M$, i.e. M is a symmetric extension of V,
- 2 M has bounded Kinna-Wagner degree over V,
- 3 there is a forcing extension of M satisfying $KWP_0^*(V)$.

In fact, $M \models$ KWP $^*_{\alpha}(V)$ iff $M = V(x)$ for some $x \subseteq \mathcal{P}^{\alpha}(V_{\eta})$, and a specific η that only depends on V, G and α .

Theorem (Karagila-S. '24)

Let $V \subseteq M \subseteq V[G]$, $V[G]$ a forcing extension of V. Then the following are equivalent:

- \blacksquare $M = V(x)$ for some $x \in M$, i.e. M is a symmetric extension of V,
- 2 M has bounded Kinna-Wagner degree over V,
- 3 there is a forcing extension of M satisfying $KWP_0^*(V)$.

In fact, $M \models$ KWP $^*_{\alpha}(V)$ iff $M = V(x)$ for some $x \subseteq \mathcal{P}^{\alpha}(V_{\eta})$, and a specific η that only depends on V, G and α .

Remark

The theorem does not assume that M is definable in $V[G]$ or even amenable to $V[G]$.

Theorem (cont'd)

Also, if M satisfies $\mathsf{KWP}^*_\alpha(V)$ then $M = V(x)$, where $x \subseteq \mathcal{P}^{n \cdot \alpha}(\mathbb{P})^M$ and $n = 3$.

It is conjectured that $n = 1$ works when $\mathbb P$ is a cBa, but the exact computations are tedious.

In the particular case that $V \models$ ZFC, we obtain:

Theorem (Karagila-S. '24)

Let $V \subseteq M \subseteq V[G]$, $V[G]$ a forcing extension of V. Then the following are equivalent:

 \blacksquare M is a symmetric extension of V,

 $2 M \models$ KWP.

3 $M \models$ SVC, i.e. there is a forcing extension of M satifying AC.

Theorem (Karagila-S.)

Let $x \in V$ be arbitrary. Then x is contained in a forcing extension of HOD^V . In other words, $\mathrm{HOD}^V(x)$ is a symmetric extension of HOD^{V} .¹

 1 This is not the same as $\mathrm{HOD}^V_{\{x\}}$, the sets hereditarily definable using ordinals and x as a parameter.

Theorem (Karagila-S.)

Let $x \in V$ be arbitrary. Then x is contained in a forcing extension of HOD^V . In other words, $\mathrm{HOD}^V(x)$ is a symmetric extension of HOD^{V} .¹

The proof crucially uses the notion of a symmetrically generic filter. We find a system $\mathcal{S} \in \mathrm{HOD}^\mathit{V}$ and a filter G that can easily be shown to be $\mathcal S$ -generic over $\mathrm{HOD}^{\boldsymbol{V}}$ and so that ${\mathsf x}$ can be recovered in $\mathrm{HOD}^V[G]_{\mathcal{S}}$.

 1 This is not the same as $\mathrm{HOD}^V_{\{x\}}$, the sets hereditarily definable using ordinals and x as a parameter.

Serge Grigorieff.

Intermediate submodels and generic extensions in set theory. The Annals of Mathematics, 101(3):447, May 1975.

Yair Hayut and Assaf Shani. 晶

Intermediate models with deep failure of choice, 2024.

S. Asaf Karagila.

Approaching a Bristol model, 2020.