Intermediate models and Kinna-Wagner degrees

J. Schilhan

University of Leeds

SETTOP 2024, Novi Sad

The IMT

Theorem (Intermediate Model Theorem, Vopěnka-Grigorieff 70's)

Let $V \subseteq M \subseteq V[G]$ be transitive models of ZFC, V[G] a forcing extension of V. Then M is a forcing extension of V.

The IMT

Theorem (Intermediate Model Theorem, Vopěnka-Grigorieff 70's)

Let $V \subseteq M \subseteq V[G]$ be transitive models of ZFC, V[G] a forcing extension of V. Then M is a forcing extension of V.

Of course not every extension is a forcing extension.

Example

 $L[0^{\#}]$ is not a forcing extension of L. Many class forcing extensions of L are not (set) forcing extensions.

The IMT

Theorem (Intermediate Model Theorem, Vopěnka-Grigorieff 70's)

Let $V \subseteq M \subseteq V[G]$ be transitive models of ZFC, V[G] a forcing extension of V. Then M is a forcing extension of V.

Of course not every extension is a forcing extension.

Example

 $L[0^{\#}]$ is not a forcing extension of L. Many class forcing extensions of L are not (set) forcing extensions.

But remarkably:

Theorem (Vopěnka '72)

Any set of ordinals $x \in V$ is generic over HOD^V.

What if we consider models of ZF?

Question

Let $V \subseteq M \subseteq V[G]$ be models of ZF, V[G] a forcing extension of V. Then M is a forcing extension of V?

What if we consider models of ZF?

Question

Let $V \subseteq M \subseteq V[G]$ be models of ZF, V[G] a forcing extension of V. Then M is a forcing extension of V?

No.

Example (First Cohen Model)

Let $L \subseteq M = L(\{c_n : n \in \omega\}) \subseteq L[\langle c_n : n \in \omega \rangle]$, where $\langle c_n : n \in \omega \rangle$ is a generic sequence of Cohen reals. *M* does not satisfy choice, so can't be a forcing extension of *L*. A technique to construct and analyse particular intermediate models of ZF is *symmetric extensions*.

Definition

A symmetric system is a triple $\mathcal{S} = (\mathbb{P}, \mathcal{G}, \mathcal{F})$ where \mathbb{P} is a forcing notion, \mathcal{G} is a group of automorphisms on \mathbb{P} and \mathcal{F} is a normal filter of subgroups of \mathcal{G} .

A technique to construct and analyse particular intermediate models of ZF is *symmetric extensions*.

Definition

A symmetric system is a triple $\mathcal{S} = (\mathbb{P}, \mathcal{G}, \mathcal{F})$ where \mathbb{P} is a forcing notion, \mathcal{G} is a group of automorphisms on \mathbb{P} and \mathcal{F} is a normal filter of subgroups of \mathcal{G} .

Automorphisms π of $\mathbb P$ can be extended naturally to $\mathbb P\text{-names}$ by letting

$$\pi(\dot{x}) = \{(\pi(p),\pi(\dot{y})):(p,\dot{y})\in\dot{x}\}.$$

Definition

A \mathbb{P} -name \dot{x} is \mathcal{S} -symmetric if

$$\{\pi \in \mathcal{G} : \pi(\dot{x}) = \dot{x}\} \in \mathcal{F}.$$

We call \dot{x} an S-name or write $\dot{x} \in HS_S$ if \dot{x} is hereditarily S-symmetric.

Definition

A \mathbb{P} -name \dot{x} is \mathcal{S} -symmetric if

$$\{\pi \in \mathcal{G} : \pi(\dot{x}) = \dot{x}\} \in \mathcal{F}.$$

We call \dot{x} an S-name or write $\dot{x} \in HS_S$ if \dot{x} is hereditarily S-symmetric.

When G is a filter on \mathbb{P} we can build a model

$$V[G]_{\mathcal{S}} = \{ \dot{x}^G : \dot{x} \in \mathsf{HS}_{\mathcal{S}} \}.$$

Definition

A \mathbb{P} -name \dot{x} is \mathcal{S} -symmetric if

$$\{\pi \in \mathcal{G} : \pi(\dot{x}) = \dot{x}\} \in \mathcal{F}.$$

We call \dot{x} an S-name or write $\dot{x} \in HS_S$ if \dot{x} is hereditarily S-symmetric.

When G is a filter on \mathbb{P} we can build a model

$$V[G]_{\mathcal{S}} = \{ \dot{x}^{G} : \dot{x} \in \mathsf{HS}_{\mathcal{S}} \}.$$

Theorem

Let G be \mathbb{P} -generic over V. Then $V[G]_{\mathcal{S}} \models \mathsf{ZF}$.

It turns out that less than \mathbb{P} -genericity is sufficient:

Definition

Let $G \subseteq \mathbb{P}$ be a filter. Then G is *S*-generic, or symmetrically generic over V, if $G \cap D \neq \emptyset$, for every dense $D \in V$ so that $\{\pi \in \mathcal{G} : \pi''D = D\} \in \mathcal{F}$.

It turns out that less than \mathbb{P} -genericity is sufficient:

Definition

Let $G \subseteq \mathbb{P}$ be a filter. Then G is *S*-generic, or symmetrically generic over V, if $G \cap D \neq \emptyset$, for every dense $D \in V$ so that $\{\pi \in \mathcal{G} : \pi''D = D\} \in \mathcal{F}$.

Theorem (Karagila, S.)

Let H be S-generic over V. Then $V[H]_S \models ZF$. In fact, for any $p \in H$ there is a \mathbb{P} -generic G over V with $p \in G$ and so that $V[H]_S = V[G]_S$.

Symmetric extensions are really a generalisation of forcing extensions.

Example

Let \mathbb{P} be a forcing notion. Then $S = (\mathbb{P}, \{id\}, \{\{id\}\})$ is a symmetric system. *G* is *S*-generic iff *G* is \mathbb{P} -generic and $V[G]_S = V[G]$.

Symmetric extensions are really a generalisation of forcing extensions.

Example

Let \mathbb{P} be a forcing notion. Then $S = (\mathbb{P}, \{id\}, \{\{id\}\})$ is a symmetric system. *G* is *S*-generic iff *G* is \mathbb{P} -generic and $V[G]_S = V[G]$.

A stupid example.

Example

Let $S = (\mathbb{C}, Aut(\mathbb{C}), \{Aut(\mathbb{C})\})$. Then $0^{\#}$ corresponds to an S-generic filter, but of course $V[0^{\#}]_{S} = V$.

Symmetric systems can be iterated:

Definition (Karagila, S.)

Let ${\cal S}$ be a symmetric system, $\dot{\cal T}$ an ${\cal S}\text{-name}$ for a symmetric system. Then we define ${\cal S}*\dot{\cal T}$ as \ldots

We can do finite, countable support iterations

Symmetric systems can be iterated:

Definition (Karagila, S.)

Let ${\cal S}$ be a symmetric system, $\dot{\cal T}$ an ${\cal S}\mbox{-name}$ for a symmetric system. Then we define ${\cal S}\ast\dot{\cal T}$ as \ldots

We can do finite, countable support iterations There are quotients:

Theorem (Karagila, S.)

Let $S_0 < S_1$, there there is an S_0 -name S_1/S_0 so that $S_0 * S_1/S_0$ is equivalent to S_1 .

A particular example is $S = (\mathbb{P}, \mathcal{G}, \mathcal{F}) \lessdot (\mathbb{P}, \mathcal{G}, \langle \{id\} \rangle)$. Then we also write \mathbb{P}/S for the quotient (which is a forcing notion).

A particular example is $S = (\mathbb{P}, \mathcal{G}, \mathcal{F}) \lessdot (\mathbb{P}, \mathcal{G}, \langle \{id\} \rangle)$. Then we also write \mathbb{P}/S for the quotient (which is a forcing notion).

Theorem (Grigorieff, Karagila-S.)

Let G be S-generic over V. Then $V[G]_{S} = V(\mathbb{P}/S)$.

A particular example is $S = (\mathbb{P}, \mathcal{G}, \mathcal{F}) \lessdot (\mathbb{P}, \mathcal{G}, \langle \{id\} \rangle)$. Then we also write \mathbb{P}/S for the quotient (which is a forcing notion).

Theorem (Grigorieff, Karagila-S.)

Let G be S-generic over V. Then $V[G]_{S} = V(\mathbb{P}/S)$.

- V[G] is a forcing extension of $V[G]_{\mathcal{S}}$ by \mathbb{P}/\mathcal{S} .

A particular example is $S = (\mathbb{P}, \mathcal{G}, \mathcal{F}) \lessdot (\mathbb{P}, \mathcal{G}, \{ \{id\} \})$. Then we also write \mathbb{P}/S for the quotient (which is a forcing notion).

Theorem (Grigorieff, Karagila-S.)

Let G be S-generic over V. Then $V[G]_{S} = V(\mathbb{P}/S)$.

- V[G] is a forcing extension of $V[G]_{\mathcal{S}}$ by \mathbb{P}/\mathcal{S} .

- Moreover any \mathbb{P}/S -extension of $V[G]_{S_0}$ is of the form V[H], where H is \mathbb{P} -generic over V and

$$V[G]_{\mathcal{S}}=V[H]_{\mathcal{S}}.$$

Recall that V(x) is the smallest transitive inner model containing x as an element.

Theorem (Corollary of Grigorieff's work '75)

Let $V \subseteq M$ be models of ZF. Then the following are equivalent:

- 1 M is a symmetric extension of V,
- 2 M = V(x) where x is an element of some forcing extension of V.

Recall that V(x) is the smallest transitive inner model containing x as an element.

Theorem (Corollary of Grigorieff's work '75)

Let $V \subseteq M$ be models of ZF. Then the following are equivalent:

2 M = V(x) where x is an element of some forcing extension of V.

In particular, the First Cohen Model $L(\{c_n : n \in \omega\})$ is a symmetric extension of L.

Back to intermediate models

Question

Let $V \subseteq M \subseteq V[G]$ be models of ZF, V[G] a forcing extension of V. Then M is a forcing symmetric extension of V?

Back to intermediate models

Question

Let $V \subseteq M \subseteq V[G]$ be models of ZF, V[G] a forcing extension of V. Then M is a forcing symmetric extension of V?

No, but this is far less trivial and was unknown for a long time.

Bristol models

Definition

A Bristol model M is an intermediate model $V \subseteq M \subseteq V[G]$ that is not of the form V(x) for any set x. In other words, M is not a symmetric extension of V.

Bristol models

Definition

A Bristol model M is an intermediate model $V \subseteq M \subseteq V[G]$ that is not of the form V(x) for any set x. In other words, M is not a symmetric extension of V.

Theorem (Bristol Workshop 2011, Karagila 2017)

There is a Bristol model M, $L \subseteq M \subseteq L[c]$, where c is a Cohen real over L.

Note that each $L(M \cap V_{\alpha})$ is a symmetric extension of L and that there is a proper class of such intermediate models. At the same time, there are only set many models of the form $L[c]_{S}$.

Bristol models

While $L(M \cap V_{\alpha})$ is of the form $L[G]_{S}$ for some system S and a generic G, there is no reason to believe that G = c or that G is even Cohen generic over L.

 $\mathbb{P} < \mathbb{C} * \text{Coll}(...)$, \mathcal{T} completely forgets about the Coll part while fixing the \mathbb{C} part, S on the other hand uses the Coll part to have particular S-names even if they are forcing equivalent to \mathbb{C} -names

What is the reason behind M not being a symmetric extension?

Definition

 KWP_{α} says that every set injects into $\mathcal{P}^{\alpha}(\mathrm{Ord})$. KWP says that there is $\alpha \in \mathrm{Ord}$ so that KWP_{α} .

What is the reason behind M not being a symmetric extension?

Definition

 KWP_{α} says that every set injects into $\mathcal{P}^{\alpha}(\mathrm{Ord})$. KWP says that there is $\alpha \in \mathrm{Ord}$ so that KWP_{α} .

Definition

The Kinna-Wagner degree of a model M is the least α such that $M \models \text{KWP}_{\alpha}$, if it exists. Otherwise we say that M has unbounded Kinna-Wagner degree.

It turns out that for many considerations a dual notion is more useful:

Definition

KWP^{*}_{α} says that $\mathcal{P}^{\alpha}(\text{Ord})$ surjects onto every set.

It turns out that for many considerations a dual notion is more useful:

Definition

KWP^{*}_{α} says that $\mathcal{P}^{\alpha}(\text{Ord})$ surjects onto every set.

Lemma

 $\mathsf{KWP}_{\alpha} \to \mathsf{KWP}_{\alpha}^* \to \mathsf{KWP}_{\alpha+1}$. For limit α , $\mathsf{KWP}_{\alpha} \leftrightarrow \mathsf{KWP}_{\alpha}^*$.

It turns out that for many considerations a dual notion is more useful:

Definition

KWP^{*}_{α} says that $\mathcal{P}^{\alpha}(\text{Ord})$ surjects onto every set.

Lemma

 $\mathsf{KWP}_{\alpha} \to \mathsf{KWP}_{\alpha}^* \to \mathsf{KWP}_{\alpha+1}$. For limit α , $\mathsf{KWP}_{\alpha} \leftrightarrow \mathsf{KWP}_{\alpha}^*$.

Theorem (Generalized Balcar-Vopěnka)

Let $M, N \models \text{KWP}^*_{\alpha}$ be transitive models with $\mathcal{P}^{\alpha+1}(\text{Ord})^M = \mathcal{P}^{\alpha+1}(\text{Ord})^N$. Then M = N.

Theorem

The statement KWP^{*}_{α} is invariant under forcing.

Theorem

The statement KWP^*_{α} is invariant under forcing. Both KWP and $\neg KWP$ are invariant under symmetric extensions.

In Hamkins' model logic of forcing terminology KWP^*_{α} is a button. These principles give a nice stratification of ZF models. The Bristol model $L \subseteq M \subseteq L[c]$ does not satisfy KWP but L does. So M is not a symmetric extension of L.

The Bristol model $L \subseteq M \subseteq L[c]$ does not satisfy KWP but L does. So M is not a symmetric extension of L.

Conjecture (Karagila '17)

Let $V \subseteq M \subseteq V[G]$, where V[G] is a forcing extension of V and $M \models KWP$. Then M is a symmetric extension of V.

Do Bristol models necessarily fail KWP?

Recently a more general construction of Bristol models has been found:

Theorem (Hayut, Shani '24)

Let $V \models \mathsf{ZF}$ be arbitrary and c a Cohen real over V. Then there is $V \subseteq N \subseteq V[c]$ so that

1
$$N \neq V(x)$$
 for every $x \in V[c]$,

2 $N \models \neg KWP$,

3 AC cannot be forced over N ($M \models \neg$ SVC).

Note that 2 implies 3, but 3 implies 2 is not true in general.

Relative Kinna-Wagner degrees

Definition

Let $V \subseteq M$. Then we say that M satisfies $KWP_{\alpha}(V)$ if for every set $x \in M$ there is an injection in M from x into some $\mathcal{P}^{\alpha}(V_n)$.

Relative Kinna-Wagner degrees

Definition

Let $V \subseteq M$. Then we say that M satisfies $KWP_{\alpha}(V)$ if for every set $x \in M$ there is an injection in M from x into some $\mathcal{P}^{\alpha}(V_{\eta})$. The Kinna-Wagner degree of M over V is the least α so that Msatisfies $KWP_{\alpha}(V)$.

Otherwise, we say that M has unbounded Kinna-Wagner degree over V.

Relative Kinna-Wagner degrees

Definition

Let $V \subseteq M$. Then we say that M satisfies $KWP_{\alpha}(V)$ if for every set $x \in M$ there is an injection in M from x into some $\mathcal{P}^{\alpha}(V_{\eta})$.

The Kinna-Wagner degree of M over V is the least α so that M satisfies $KWP_{\alpha}(V)$.

Otherwise, we say that M has unbounded Kinna-Wagner degree over V.

Similarly we define $KWP^*_{\alpha}(V)$.

Note that when $V \models ZFC$, then $KWP_{\alpha}(V)/KWP_{\alpha}^{*}(V)$ is just the same as $KWP_{\alpha}/KWP_{\alpha}^{*}$.

Lemma

Suppose $x \subseteq P^{\alpha}(V_{\eta})$, for some $\eta \in \text{Ord.}$ Then V(x) satisfies $KWP^*_{\alpha}(V)$.

In particular, any model of the form V(x) for a set x has bounded Kinna-Wagner degree over V.

Theorem (Karagila-S. '24)

Let $V \subseteq M \subseteq V[G]$, V[G] a forcing extension of V. Then the following are equivalent:

- $M = V(x) \text{ for some } x \in M, \text{ i.e. } M \text{ is a symmetric extension of } V,$
- 2 M has bounded Kinna-Wagner degree over V,
- **3** there is a forcing extension of M satisfying $KWP_0^*(V)$.

Theorem (Karagila-S. '24)

Let $V \subseteq M \subseteq V[G]$, V[G] a forcing extension of V. Then the following are equivalent:

- $M = V(x) \text{ for some } x \in M, \text{ i.e. } M \text{ is a symmetric extension of } V,$
- 2 M has bounded Kinna-Wagner degree over V,
- **3** there is a forcing extension of M satisfying $KWP_0^*(V)$.

In fact, $M \models KWP^*_{\alpha}(V)$ iff M = V(x) for some $x \subseteq \mathcal{P}^{\alpha}(V_{\eta})$, and a specific η that only depends on V, G and α .

Theorem (Karagila-S. '24)

Let $V \subseteq M \subseteq V[G]$, V[G] a forcing extension of V. Then the following are equivalent:

- $M = V(x) \text{ for some } x \in M, \text{ i.e. } M \text{ is a symmetric extension of } V,$
- 2 M has bounded Kinna-Wagner degree over V,
- **3** there is a forcing extension of M satisfying $KWP_0^*(V)$.

In fact, $M \models KWP^*_{\alpha}(V)$ iff M = V(x) for some $x \subseteq \mathcal{P}^{\alpha}(V_{\eta})$, and a specific η that only depends on V, G and α .

Remark

The theorem does not assume that M is definable in V[G] or even amenable to V[G].

Theorem (cont'd)

Also, if M satisfies $KWP^*_{\alpha}(V)$ then M = V(x), where $x \subseteq \mathcal{P}^{n \cdot \alpha}(\mathbb{P})^M$ and n = 3.

It is conjectured that n = 1 works when \mathbb{P} is a cBa, but the exact computations are tedious.

In the particular case that $V \models ZFC$, we obtain:

Theorem (Karagila-S. '24)

Let $V \subseteq M \subseteq V[G]$, V[G] a forcing extension of V. Then the following are equivalent:

2
$$M \models KWP$$
,

3 $M \models$ SVC, *i.e.* there is a forcing extension of M satifying AC.

Theorem (Karagila-S.)

Let $x \in V$ be arbitrary. Then x is contained in a forcing extension of HOD^V. In other words, HOD^V(x) is a symmetric extension of HOD^V.¹

 $^{^1} This$ is not the same as ${\rm HOD}_{\{x\}}^V$, the sets hereditarily definable using ordinals and x as a parameter.

Theorem (Karagila-S.)

Let $x \in V$ be arbitrary. Then x is contained in a forcing extension of HOD^V. In other words, HOD^V(x) is a symmetric extension of HOD^V.¹

The proof crucially uses the notion of a symmetrically generic filter. We find a system $S \in HOD^V$ and a filter G that can easily be shown to be S-generic over HOD^V and so that x can be recovered in $HOD^V[G]_S$.

¹This is not the same as $HOD_{\{x\}}^V$, the sets hereditarily definable using ordinals and x as a parameter.

Serge Grigorieff.

Intermediate submodels and generic extensions in set theory. *The Annals of Mathematics*, 101(3):447, May 1975.

Yair Hayut and Assaf Shani.

Intermediate models with deep failure of choice, 2024.

🔒 Asaf Karagila.

Approaching a Bristol model, 2020.