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The IMT

Theorem (Intermediate Model Theorem, Vopěnka-Grigorieff 70’s)

Let V ⊆ M ⊆ V [G ] be transitive models of ZFC, V [G ] a forcing
extension of V . Then M is a forcing extension of V .

Of course not every extension is a forcing extension.

Example

L[0#] is not a forcing extension of L. Many class forcing extensions
of L are not (set) forcing extensions.

But remarkably:

Theorem (Vopěnka ’72)

Any set of ordinals x ∈ V is generic over HODV .
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The IMT

What if we consider models of ZF?

Question

Let V ⊆ M ⊆ V [G ] be models of ZF, V [G ] a forcing extension of
V . Then M is a forcing extension of V ?

No.

Example (First Cohen Model)

Let L ⊆ M = L({cn : n ∈ ω}) ⊆ L[⟨cn : n ∈ ω⟩], where ⟨cn : n ∈ ω⟩
is a generic sequence of Cohen reals. M does not satisfy choice, so
can’t be a forcing extension of L.
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Symmetric systems

A technique to construct and analyse particular intermediate
models of ZF is symmetric extensions.

Definition

A symmetric system is a triple S = (P,G,F) where P is a forcing
notion, G is a group of automorphisms on P and F is a normal
filter of subgroups of G.

Automorphisms π of P can be extended naturally to P-names by
letting

π(ẋ) = {(π(p), π(ẏ)) : (p, ẏ) ∈ ẋ}.
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Symmetric extensions

Definition

A P-name ẋ is S-symmetric if

{π ∈ G : π(ẋ) = ẋ} ∈ F .

We call ẋ an S-name or write ẋ ∈ HSS if ẋ is hereditarily
S-symmetric.

When G is a filter on P we can build a model

V [G ]S = {ẋG : ẋ ∈ HSS}.

Theorem

Let G be P-generic over V . Then V [G ]S |= ZF.
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Theorem

Let G be P-generic over V . Then V [G ]S |= ZF.



6/25

Symmetric extension

It turns out that less than P-genericity is sufficient:

Definition

Let G ⊆ P be a filter. Then G is S-generic, or symmetrically
generic over V , if G ∩ D ̸= ∅, for every dense D ∈ V so that
{π ∈ G : π′′D = D} ∈ F .

Theorem (Karagila, S.)

Let H be S-generic over V . Then V [H]S |= ZF. In fact, for any
p ∈ H there is a P-generic G over V with p ∈ G and so that
V [H]S = V [G ]S .
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Symmetric extensions

Symmetric extensions are really a generalisation of forcing
extensions.

Example

Let P be a forcing notion. Then S = (P, {id}, {{id}}) is a
symmetric system. G is S-generic iff G is P-generic and
V [G ]S = V [G ].

A stupid example.

Example

Let S = (C,Aut(C), {Aut(C)}). Then 0# corresponds to an
S-generic filter, but of course V [0#]S = V .
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Symmetric extensions

Symmetric systems can be iterated:

Definition (Karagila, S.)

Let S be a symmetric system, Ṫ an S-name for a symmetric
system. Then we define S ∗ Ṫ as . . .

We can do finite, countable support iterations . . .

There are quotients:

Theorem (Karagila, S.)

Let S0 ⋖ S1, there there is an S0-name S1/̇S0 so that S0 ∗ S1/̇S0 is
equivalent to S1.
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We can do finite, countable support iterations . . .
There are quotients:

Theorem (Karagila, S.)

Let S0 ⋖ S1, there there is an S0-name S1/̇S0 so that S0 ∗ S1/̇S0 is
equivalent to S1.



9/25

Symmetric extensions

A particular example is S = (P,G,F)⋖ (P,G, ⟨{id}⟩). Then we
also write P/S for the quotient (which is a forcing notion).

Theorem (Grigorieff, Karagila-S.)

Let G be S-generic over V . Then V [G ]S = V (P/S).

- V [G ] is a forcing extension of V [G ]S by P/S.

- Moreover any P/S-extension of V [G ]S0 is of the form V [H],
where H is P-generic over V and

V [G ]S = V [H]S .



9/25

Symmetric extensions

A particular example is S = (P,G,F)⋖ (P,G, ⟨{id}⟩). Then we
also write P/S for the quotient (which is a forcing notion).

Theorem (Grigorieff, Karagila-S.)

Let G be S-generic over V . Then V [G ]S = V (P/S).

- V [G ] is a forcing extension of V [G ]S by P/S.

- Moreover any P/S-extension of V [G ]S0 is of the form V [H],
where H is P-generic over V and

V [G ]S = V [H]S .



9/25

Symmetric extensions

A particular example is S = (P,G,F)⋖ (P,G, ⟨{id}⟩). Then we
also write P/S for the quotient (which is a forcing notion).

Theorem (Grigorieff, Karagila-S.)

Let G be S-generic over V . Then V [G ]S = V (P/S).

- V [G ] is a forcing extension of V [G ]S by P/S.

- Moreover any P/S-extension of V [G ]S0 is of the form V [H],
where H is P-generic over V and

V [G ]S = V [H]S .



9/25

Symmetric extensions

A particular example is S = (P,G,F)⋖ (P,G, ⟨{id}⟩). Then we
also write P/S for the quotient (which is a forcing notion).

Theorem (Grigorieff, Karagila-S.)

Let G be S-generic over V . Then V [G ]S = V (P/S).

- V [G ] is a forcing extension of V [G ]S by P/S.

- Moreover any P/S-extension of V [G ]S0 is of the form V [H],
where H is P-generic over V and

V [G ]S = V [H]S .



10/25

Symmetric extensions

Recall that V (x) is the smallest transitive inner model containing x
as an element.

Theorem (Corollary of Grigorieff’s work ’75)

Let V ⊆ M be models of ZF. Then the following are equivalent:

1 M is a symmetric extension of V ,

2 M = V (x) where x is an element of some forcing extension of
V .

In particular, the First Cohen Model L({cn : n ∈ ω}) is a
symmetric extension of L.
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Back to intermediate models

Question

Let V ⊆ M ⊆ V [G ] be models of ZF, V [G ] a forcing extension of
V . Then M is a forcing symmetric extension of V ?

No, but this is far less trivial and was unknown for a long time.
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Bristol models

Definition

A Bristol model M is an intermediate model V ⊆ M ⊆ V [G ] that
is not of the form V (x) for any set x . In other words, M is not a
symmetric extension of V .

Theorem (Bristol Workshop 2011, Karagila 2017)

There is a Bristol model M, L ⊆ M ⊆ L[c], where c is a Cohen
real over L.

Note that each L(M ∩ Vα) is a symmetric extension of L and that
there is a proper class of such intermediate models. At the same
time, there are only set many models of the form L[c]S .



12/25

Bristol models

Definition

A Bristol model M is an intermediate model V ⊆ M ⊆ V [G ] that
is not of the form V (x) for any set x . In other words, M is not a
symmetric extension of V .

Theorem (Bristol Workshop 2011, Karagila 2017)

There is a Bristol model M, L ⊆ M ⊆ L[c], where c is a Cohen
real over L.

Note that each L(M ∩ Vα) is a symmetric extension of L and that
there is a proper class of such intermediate models. At the same
time, there are only set many models of the form L[c]S .



13/25

Bristol models

While L(M ∩ Vα) is of the form L[G ]S for some system S and a
generic G , there is no reason to believe that G = c or that G is
even Cohen generic over L.

L L(Mα) L[c] L[c ∗ H]T

S=(P,... )

⊆ ⊆ =

T =(C∗Coll(... ),... )

S∗T /̇S

P ⋖ C ∗ Coll(. . . ), T completely forgets about the Coll part while
fixing the C part, S on the other hand uses the Coll part to have
particular S-names even if they are forcing equivalent to C-names
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Kinna-Wagner Principles

What is the reason behind M not being a symmetric extension?

Definition

KWPα says that every set injects into Pα(Ord). KWP says that
there is α ∈ Ord so that KWPα.

Definition

The Kinna-Wagner degree of a model M is the least α such that
M |= KWPα, if it exists. Otherwise we say that M has unbounded
Kinna-Wagner degree.
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Kinna-Wagner principles

It turns out that for many considerations a dual notion is more
useful:

Definition

KWP∗
α says that Pα(Ord) surjects onto every set.

Lemma

KWPα → KWP∗
α → KWPα+1. For limit α, KWPα ↔ KWP∗

α.

Theorem (Generalized Balcar-Vopěnka)

Let M,N |= KWP∗
α be transitive models with

Pα+1(Ord)M = Pα+1(Ord)N . Then M = N.
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Kinna-Wagner principles

Theorem

The statement KWP∗
α is invariant under forcing.

Both KWP and
¬KWP are invariant under symmetric extensions.

In Hamkins’ model logic of forcing terminology KWP∗
α is a button.

These principles give a nice stratification of ZF models.
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The Kinna-Wagner Conjecture

The Bristol model L ⊆ M ⊆ L[c] does not satisfy KWP but L
does. So M is not a symmetric extension of L.

Conjecture (Karagila ’17)

Let V ⊆ M ⊆ V [G ], where V [G ] is a forcing extension of V and
M |= KWP. Then M is a symmetric extension of V .

Do Bristol models necessarily fail KWP?
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Britol models everywhere

Recently a more general construction of Bristol models has been
found:

Theorem (Hayut, Shani ’24)

Let V |= ZF be arbitrary and c a Cohen real over V . Then there is
V ⊆ N ⊆ V [c] so that

1 N ̸= V (x) for every x ∈ V [c],

2 N |= ¬KWP,

3 AC cannot be forced over N (M |= ¬SVC).

Note that 2 implies 3, but 3 implies 2 is not true in general.
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Relative Kinna-Wagner degrees

Definition

Let V ⊆ M. Then we say that M satisfies KWPα(V ) if for every
set x ∈ M there is an injection in M from x into some Pα(Vη).

The Kinna-Wagner degree of M over V is the least α so that M
satisfies KWPα(V ).

Otherwise, we say that M has unbounded Kinna-Wagner degree
over V .

Similarly we define KWP∗
α(V ).
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Relative Kinna-Wagner degrees

Note that when V |= ZFC, then KWPα(V )/KWP∗
α(V ) is just the

same as KWPα/KWP∗
α.

Lemma

Suppose x ⊆ Pα(Vη), for some η ∈ Ord. Then V (x) satisfies
KWP∗

α(V ).

In particular, any model of the form V (x) for a set x has bounded
Kinna-Wagner degree over V .
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The generalized IMT

Theorem (Karagila-S. ’24)

Let V ⊆ M ⊆ V [G ], V [G ] a forcing extension of V . Then the
following are equivalent:

1 M = V (x) for some x ∈ M, i.e. M is a symmetric extension
of V ,

2 M has bounded Kinna-Wagner degree over V ,

3 there is a forcing extension of M satisfying KWP∗
0(V ).

In fact, M |= KWP∗
α(V ) iff M = V (x) for some x ⊆ Pα(Vη), and

a specific η that only depends on V , G and α.

Remark

The theorem does not assume that M is definable in V [G ] or even
amenable to V [G ].
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The generalized IMT

Theorem (cont’d)

Also, if M satisfies KWP∗
α(V ) then M = V (x), where

x ⊆ Pn·α(P)M and n = 3.

It is conjectured that n = 1 works when P is a cBa, but the exact
computations are tedious.
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The generalized IMT

In the particular case that V |= ZFC, we obtain:

Theorem (Karagila-S. ’24)

Let V ⊆ M ⊆ V [G ], V [G ] a forcing extension of V . Then the
following are equivalent:

1 M is a symmetric extension of V ,

2 M |= KWP,

3 M |= SVC, i.e. there is a forcing extension of M satifying AC.
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Genericity over HOD

Theorem (Karagila-S.)

Let x ∈ V be arbitrary. Then x is contained in a forcing extension
of HODV . In other words, HODV (x) is a symmetric extension of
HODV .1

The proof crucially uses the notion of a symmetrically generic
filter. We find a system S ∈ HODV and a filter G that can easily
be shown to be S-generic over HODV and so that x can be
recovered in HODV [G ]S .

1This is not the same as HODV
{x}, the sets hereditarily definable using

ordinals and x as a parameter.
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