More minimal non-σ-scattered linear orders

Novi Sad Conference In Set Theory and General Topology August-2024

> Roy Shalev Bar-Ilan University

Results from https://arxiv.org/abs/2312.17062

Let $\mathfrak M$ be a class of linear orders.

Let $\mathfrak M$ be a class of linear orders.

Given $(L, <_L)$ and $(K, <_K)$ linear orders, we say that $L \leq K$ if and only if there exists a function $f: L \to K$ such that for all $x, y \in L$, if $x \leq l$ y, then $f(x) \leq K f(y)$.

Let \mathfrak{M} be a class of linear orders.

Given (L, \lt_L) and (K, \lt_K) linear orders, we say that $L \leq K$ if and only if there exists a function $f: L \to K$ such that for all $x, y \in L$, if $x \leq l$ y, then $f(x) \leq k$ $f(y)$.

The minimality question: Is it consistent that there exists a linear order $L \in \mathfrak{M}$ such that for every $K \leq L$ in \mathfrak{M} we have $L \leq K$?

We say that a family $\mathcal{L} \subseteq \mathfrak{M}$ is an antichain if any two elements in $\mathcal L$ are not \leq -comparable.

We say that a family $\mathcal{L} \subseteq \mathfrak{M}$ is an antichain if any two elements in $\mathcal L$ are not \leq -comparable.

The antichain question: What is the largest antichain in class?

We say that a family $\mathcal{L} \subseteq \mathfrak{M}$ is an antichain if any two elements in $\mathcal L$ are not \leq -comparable.

The antichain question: What is the largest antichain in class?

We say that two elements $(L, <_L)$ and $(K, <_K)$ are near if there exists some $(N, <_N)$ in M such that $N \leq L$ and $N \leq K$.

We say that a family $\mathcal{L} \subseteq \mathfrak{M}$ is an antichain if any two elements in $\mathcal L$ are not \leq -comparable.

The antichain question: What is the largest antichain in class?

We say that two elements $(L, <_I)$ and $(K, <_K)$ are near if there exists some $(N, <_N)$ in M such that $N \leq L$ and $N \leq K$.

The pairwise not near question: What is the largest family in $\mathfrak M$ of pairwise not near elements?

Recall that a linear order L is scattered iff $\mathbb{Q} \not\leq L$.

Recall that a linear order L is scattered iff $\mathbb{Q} \not\leq L$.

A linear order L is σ -scattered iff it is a union of countably many scattered linear suborders.

Recall that a linear order L is scattered iff $\mathbb{Q} \not\leq L$.

A linear order L is σ -scattered iff it is a union of countably many scattered linear suborders.

We focus on the class \mathfrak{M} of all non- σ -scattered linear orders.

Recall that a linear order L is scattered iff $\mathbb{Q} \not\leq L$.

A linear order L is σ -scattered iff it is a union of countably many scattered linear suborders.

We focus on the class \mathfrak{M} of all non- σ -scattered linear orders.

This class include:

- ▶ Aronszan lines;
- ▶ Real types;
- ▶ Baumgartner types.

Definition

A tree is a poset $T = \langle T, \triangleleft \rangle$ in which $x_{\perp} := \{ y \in T \mid y \triangleleft x \}$ is well-ordered for all $x \in T$;

- A tree is a poset $T = \langle T, \triangleleft \rangle$ in which $x_{\perp} := \{ y \in T \mid y \triangleleft x \}$ is well-ordered for all $x \in T$;
- ▶ The height of $x \in T$ is $ht(x) := \text{otp}(x_{\perp}, \triangleleft)$;

- A tree is a poset $T = \langle T, \triangleleft \rangle$ in which $x_{\perp} := \{ y \in T \mid y \triangleleft x \}$ is well-ordered for all $x \in T$:
- ▶ The height of $x \in T$ is $ht(x) := \text{otp}(x_{\perp}, \triangleleft)$;
- ▶ The height of T is sup $\{ht(x) + 1 \mid x \in T\}$;

- A tree is a poset $T = \langle T, \triangleleft \rangle$ in which $x_{\perp} := \{ y \in T \mid y \triangleleft x \}$ is well-ordered for all $x \in T$:
- ▶ The height of $x \in T$ is $ht(x) := \text{otp}(x_{\perp}, \triangleleft)$;
- ▶ The height of T is sup $\{ht(x) + 1 \mid x \in T\}$;
- A κ -tree is a tree of height κ whose levels are of size $\lt \kappa$;

- A tree is a poset $T = \langle T, \triangleleft \rangle$ in which $x_{\perp} := \{ y \in T \mid y \triangleleft x \}$ is well-ordered for all $x \in T$:
- ▶ The height of $x \in T$ is $ht(x) := \text{otp}(x_1, \triangleleft);$
- ▶ The height of T is sup $\{ht(x) + 1 \mid x \in T\}$;
- A κ -tree is a tree of height κ whose levels are of size $\lt \kappa$;
- A κ -tree (T, \triangleleft) is Aronszajn if it has no chains of size κ ;

- A tree is a poset $T = \langle T, \triangleleft \rangle$ in which $x_{\perp} := \{ y \in T \mid y \triangleleft x \}$ is well-ordered for all $x \in T$:
- ▶ The height of $x \in T$ is $ht(x) := \text{otp}(x_1, \triangleleft);$
- ▶ The height of T is sup $\{ht(x) + 1 \mid x \in T\}$;
- A κ -tree is a tree of height κ whose levels are of size $\lt \kappa$;
- A κ -tree (T, \triangleleft) is Aronszajn if it has no chains of size κ ;
- A κ -tree (T, \triangleleft) is Souslin if it has no chains or antichains of size κ.

From trees to linear orders

Assume (T, \subseteq) is a tree and $T \subseteq \langle \kappa \omega := \{f : \alpha \to \omega \mid \alpha < \kappa \}.$

From trees to linear orders

Assume (T, \subseteq) is a tree and $T \subseteq \langle \kappa \omega := \{f : \alpha \to \omega \mid \alpha < \kappa \}.$

The lexicographic order is a linear order $(T, <_{lex})$ defined as follows: For $s, t \in T$,

$$
s <_{\text{lex}} t \iff s \sqsubseteq t \text{ or } s(\Delta) < t(\Delta)
$$

where $\Delta := \min\{\xi < \min\{\text{dom}(s), \text{dom}(t)\} \mid s(\xi) \neq t(\xi)\}.$

From trees to linear orders

Assume (T, \subseteq) is a tree and $T \subseteq \langle \kappa \omega := \{f : \alpha \to \omega \mid \alpha < \kappa \}.$

The lexicographic order is a linear order $(T, <_{lex})$ defined as follows: For $s, t \in \mathcal{T}$,

$$
\mathsf{s} <_\mathsf{lex} t \iff \mathsf{s} \sqsubseteq t \;\mathsf{or}\; \mathsf{s}(\Delta) < t(\Delta)
$$

where $\Delta := \min\{\xi < \min\{\text{dom}(s), \text{dom}(t)\} \mid s(\xi) \neq t(\xi)\}.$

If (T, \subseteq) is a κ -Aronszajn tree, then $(T, <_{\text{lex}})$ is a κ -Aronszajn line. For (T, \subseteq) is a κ -Souslin tree, then $(T, <_{lex})$ contains a κ -Souslin line.

An uncountable minimal linear order

Theorem (Baumgartner 1982, D. Soukup 2019)

Assuming \diamondsuit^+ , there exists a minimal Souslin line with respect to the class of uncountable linear orders.

An uncountable minimal linear order

Theorem (Baumgartner 1982, D. Soukup 2019)

Assuming \diamondsuit^+ , there exists a minimal Souslin line with respect to the class of uncountable linear orders.

Baumgartner asked if \diamondsuit^+ could be weakened to \diamondsuit and whether his argument could be adapted to construct a minimal Aronszajn line which was not Souslin.

An uncountable minimal linear order

Theorem (Baumgartner 1982, D. Soukup 2019)

Assuming \diamondsuit^+ , there exists a minimal Souslin line with respect to the class of uncountable linear orders.

Baumgartner asked if \diamondsuit^+ could be weakened to \diamondsuit and whether his argument could be adapted to construct a minimal Aronszajn line which was not Souslin.

Recently, Cummings, Eisworth and Moore gave a positive answer to both questions. Furthemore, they gave the first example for higher analogs of these linear orders.

Higher analog

Theorem (Cummings-Eisworth-Moore, 2023)

Consistently for each infinite cardinal λ , there exists a minimal with respect to being non- σ -scattered linear order of size λ^+ . In fact, a λ^+ -Countryman line.

Higher analog

Theorem (Cummings-Eisworth-Moore, 2023)

Consistently for each infinite cardinal λ , there exists a minimal with respect to being non- σ -scattered linear order of size λ^+ . In fact, a λ^+ -Countryman line.

They used \boxtimes_{λ} to construct a λ^{+} -Aronszajn tree (\mathcal{T},\subseteq) where $T \subseteq \langle \lambda^+ \omega \rangle$ which is not λ^+ -Souslin such that for every antichain $X \subseteq \mathcal{T}$ of size λ^+ , $(X, <_\mathsf{lex})$ is a minimal non- σ scattered linear order, i.e. for $Y \subseteq X$ such that (Y, \leq_{lex}) is a non- σ scattered, then $(X, \langle \zeta_{\text{lex}})$ embeds into $(Y, \langle \zeta_{\text{lex}})$.

Higher analog

Theorem (Cummings-Eisworth-Moore, 2023)

Consistently for each infinite cardinal λ , there exists a minimal with respect to being non- σ -scattered linear order of size λ^+ . In fact, a λ^+ -Countryman line.

They used \boxtimes_{λ} to construct a λ^{+} -Aronszajn tree (\mathcal{T},\subseteq) where $T \subseteq \langle \lambda^+ \omega \rangle$ which is not λ^+ -Souslin such that for every antichain $X \subseteq \mathcal{T}$ of size λ^+ , $(X, <_\mathsf{lex})$ is a minimal non- σ scattered linear order, i.e. for $Y \subseteq X$ such that (Y, \leq_{lex}) is a non- σ scattered, then $(X, \langle \zeta_{\text{lex}})$ embeds into $(Y, \langle \zeta_{\text{lex}})$.

It was suggested in [CEM24] that it should be possible to extend the result to inaccessible cardinals.

Wanted

WANTED

A minimal non-σ-scattered linear order of inacc. card.

The following theorem may be extracted from [CEM24].

The following theorem may be extracted from [CEM24].

Theorem Assuming $T \n\subseteq \n\leq^{\kappa} \omega$ is such that:

The following theorem may be extracted from [CEM24].

Theorem Assuming $T \n\t\subseteq \n\t\leq^{\kappa} \omega$ is such that: \blacktriangleright (T, \subseteq) is a normal κ -Aronszajn tree not κ -Souslin tree;

The following theorem may be extracted from [CEM24].

Theorem Assuming $T \n\t\subseteq \n\t\leq^{\kappa} \omega$ is such that:

 \blacktriangleright (T, \subseteq) is a normal κ -Aronszajn tree not κ -Souslin tree;

 \blacktriangleright T is ρ -coherent and ρ -uniform;

The following theorem may be extracted from [CEM24].

Theorem Assuming $T \subset \langle \kappa_{\omega} \rangle$ is such that:

- ▶ (T, \subseteq) is a normal κ -Aronszajn tree not κ -Souslin tree;
- \blacktriangleright T is ρ -coherent and ρ -uniform;
- \blacktriangleright Every subtree of T contains a frozen cone.

The following theorem may be extracted from [CEM24].

Theorem

Assuming $T \subset \langle \kappa_{\omega} \rangle$ is such that:

- \blacktriangleright (T, \subseteq) is a normal κ -Aronszajn tree not κ -Souslin tree;
- \blacktriangleright T is ρ -coherent and ρ -uniform;
- \blacktriangleright Every subtree of T contains a frozen cone.

Then for every antichain $X \subseteq T$ of size κ , the linear order (X, \leq_{lex}) is minimal with respect to being non- σ -scattered.

Main result

Theorem

Assume κ is a regular uncountable cardinal and $P_{\xi}(\kappa, 2, \sqsubseteq, \kappa)$ holds for some ordinal $\xi < \kappa$.

Then the class \mathfrak{M}_{κ} of non-σ-scattered linear orders of size κ has 2^{κ} -many pairwise non-near minimal elements with respect to being non-σ-scattered.

If $\xi < \kappa$, then the elements are all κ -Countryman lines. $P_{\xi}(\lambda^{+}, 2, \sqsubseteq, \lambda^{+})$ is strictly weaker than \bigotimes_{λ} .

In a series of papers Brodsky and Rinot presented new foundations and a new method to construct κ -trees.

In a series of papers Brodsky and Rinot presented new foundations and a new method to construct κ-trees.

The foundations consist of a family of proxy principles $P(\kappa, \dots)$ that enable to construct a κ -tree regardless of the nature of the cardinal κ (being $\kappa = \aleph_1$, \aleph_2 , $\aleph_{\omega+1}$, inaccessible ...)

In a series of papers Brodsky and Rinot presented new foundations and a new method to construct κ-trees.

The foundations consist of a family of proxy principles $P(\kappa, \dots)$ that enable to construct a κ -tree regardless of the nature of the cardinal κ (being $\kappa = \aleph_1$, \aleph_2 , $\aleph_{\omega+1}$, inaccessible ...)

The method is known as the microscopic approach.

The pros of using the microscopic approach

▶ Assuming a consequence of \diamondsuit which also holds in the generic extension after adding a single Cohen real to a model of CH there exists a family of 2^{\aleph_1} many Countryman lines each one is minimal with respect to being non- σ -scattered and every two members of the family are not near.

The pros of using the microscopic approach

▶ Assuming a consequence of \diamondsuit which also holds in the generic extension after adding a single Cohen real to a model of CH there exists a family of 2^{\aleph_1} many Countryman lines each one is minimal with respect to being non- σ -scattered and every two members of the family are not near.

 \blacktriangleright The construction take care of the missing case, inaccessible cardinals.

The pros of using the microscopic approach

▶ Assuming a consequence of \diamondsuit which also holds in the generic extension after adding a single Cohen real to a model of CH there exists a family of 2^{\aleph_1} many Countryman lines each one is minimal with respect to being non- σ -scattered and every two members of the family are not near.

 \blacktriangleright The construction take care of the missing case, inaccessible cardinals.

▶ Easier to construct many trees which do not embed on a club into one another.

Antichain of linear orders

Lemma: If (S, \leq_S, \leq_B) , (T, \leq_T, \leq_T) are two lexicographically ordered κ -Aronszajn trees, X and Y are subsets of S and T respectively, both of size κ and π : $(X, \leq_{15}) \rightarrow (Y, \leq_{17})$ is an order isomorphism, then there exists a club C such that $((X_1) \restriction C, \leq_S, \leq_S)$ is tree isomorphic and order isomorphic to $((Y_1) \upharpoonright C, \langle \tau, \langle \tau \rangle).$

 \triangleright (X_1) \upharpoonright $C = \{s \in S \mid ht_S(s) \in C \& \exists x \in X[s \leq_S x]\};$

ρ -modifcations

Next, we describe key ingredients from [CEM24].

ρ -modifcations

Next, we describe key ingredients from [CEM24].

A function $\eta : \alpha + 1 \to \mathbb{Z}$ is a modification if $\alpha < \kappa$ and η changes values only finitely many times and the changes take place at successor ordinal below α .

Let ρ denote the collection of all such modifications.

ρ -modifcations

Next, we describe key ingredients from [CEM24].

A function $\eta : \alpha + 1 \to \mathbb{Z}$ is a modification if $\alpha < \kappa$ and η changes values only finitely many times and the changes take place at successor ordinal below α .

Let ρ denote the collection of all such modifications.

For $\eta \in \varrho$ and $t \in \langle \kappa \omega \text{ with } \text{dom}(\eta) \leq \text{dom}(t)$ let the map $\eta * t : dom(t) \rightarrow \omega$ be defined by stipulating:

$$
(\eta * t)(\beta) := \begin{cases} t(\beta) + \eta(\beta), & \text{if } \beta \in \text{dom}(\eta); \\ t(\beta), & \text{otherwise.} \end{cases}
$$

Let (T, \subseteq) be a tree such that $T \subseteq \leq^k \omega$ and for all $t \in T$ and $\beta <$ ht(t) we have $t \restriction \beta \in \mathcal{T}$.

Let (T, \subseteq) be a tree such that $T \subseteq \leq^{\kappa} \omega$ and for all $t \in T$ and $\beta <$ ht(t) we have $t \restriction \beta \in \mathcal{T}$.

T is ρ -coherent, if for every $t,s \in T$ of the same successor level the map $t - s$ is a ρ -modifier.

Let (T, \subseteq) be a tree such that $T \subseteq \langle \kappa \omega \rangle$ and for all $t \in T$ and $\beta <$ ht(t) we have $t \restriction \beta \in \mathcal{T}$.

T is ρ -coherent, if for every $t,s \in T$ of the same successor level the map $t - s$ is a ρ -modifier.

T is ρ -uniform, if for every $t \in T$ and every ρ -modifier η , if $\text{Im}(\eta * t) \subseteq \omega$ then $\eta * t \in \mathcal{T}$.

Let (T, \subseteq) be a tree such that $T \subseteq \leq^k \omega$ and for all $t \in T$ and $\beta <$ ht(t) we have $t \restriction \beta \in \mathcal{T}$.

T is ρ -coherent, if for every $t,s \in T$ of the same successor level the map $t - s$ is a ρ -modifier.

T is ρ -uniform, if for every $t \in T$ and every ρ -modifier η , if $\textsf{Im}(\eta * t) \subseteq \omega$ then $\eta * t \in \mathcal{T}$.

For $\eta \in \varrho$, we define η^- : dom $(\eta) \to \mathbb{Z}$ by letting $\eta^-(\alpha) = -\eta(\alpha)$ for $\alpha \in \text{dom}(\eta)$.

If T is κ -Aronszajn, then by a theorem of Hausdorff the linear order $(T, <_{lex})$ is non- σ -scattered.

If T is κ -Aronszajn, then by a theorem of Hausdorff the linear order $(T, <_{lex})$ is non- σ -scattered.

If $T \subset \langle \kappa_\omega \rangle$ is ρ -coherent and ρ -uniform tree, then every subset $X \subseteq T$ of size $\lt \kappa$ is such that (X, \lt_{lex}) is σ -scattered.

If T is κ -Aronszajn, then by a theorem of Hausdorff the linear order $(T, <_{lex})$ is non- σ -scattered.

If $T \n\subset \n\leq^{\kappa} \omega$ is ϱ -coherent and ϱ -uniform tree, then every subset $X \subseteq T$ of size $\lt \kappa$ is such that (X, \lt_{lex}) is σ -scattered.

Key idea: Construct a κ -Aronszajn tree $T \subset \leq^{\kappa} \omega$ such that for every subtree S (downward closed and of size κ) there exists a function $\varphi : \mathcal{T} \to \mathcal{S}$ which is order-preserving, preserves the \lt_{lex} -order and incompatability in the tree.

If T is κ -Aronszajn, then by a theorem of Hausdorff the linear order $(T, <_{lex})$ is non- σ -scattered.

If $T \n\subset \n\leq^{\kappa} \omega$ is ϱ -coherent and ϱ -uniform tree, then every subset $X \subseteq T$ of size \lt κ is such that (X, \lt_{lex}) is σ -scattered.

Key idea: Construct a κ -Aronszajn tree $T \subset \leq^{\kappa} \omega$ such that for every subtree S (downward closed and of size κ) there exists a function $\varphi : \mathcal{T} \to \mathcal{S}$ which is order-preserving, preserves the \lt_{lex} -order and incompatability in the tree.

This was achieved in [CEM24] using the following:

Suppose that $T \subseteq \langle \kappa \omega \rangle$ is ρ -coherent and ρ -uniform.

1. Suppose $i < \omega$ and $s, t \in T$. We say that t is an i-extension of s, written $s \subseteq_i t$, if $s \subseteq t$ and whenever $\text{ht}(s) \leq \xi < \text{ht}(t)$, $t(\xi) \geq i$.

Suppose that $T \subseteq \langle \kappa \omega \rangle$ is ρ -coherent and ρ -uniform.

- 1. Suppose $i < \omega$ and $s, t \in T$. We say that t is an i-extension of s, written $s \subseteq i$, if $s \subseteq t$ and whenever $\text{ht}(s) \leq \xi < \text{ht}(t)$, $t(\xi) \geq i$.
- 2. The *frozen cone of T determined by s and i*, denoted $T_{[s,i]}$, is defined by

$$
T_{[s,i]} := \{t \in T : t \subseteq s \text{ or } s \subseteq_i t\}.
$$

Suppose that $T \subseteq \langle \kappa_{\omega} \rangle$ is ρ -coherent and ρ -uniform.

- 1. Suppose $i < \omega$ and $s, t \in T$. We say that t is an i-extension of s, written $s \subseteq i$, if $s \subseteq t$ and whenever $ht(s) \leq \xi < ht(t), t(\xi) \geq i$.
- 2. The *frozen cone of T determined by s and i*, denoted $T_{[s,i]}$, is defined by

$$
T_{[s,i]} := \{t \in T : t \subseteq s \text{ or } s \subseteq_i t\}.
$$

Since T is ϱ -uniform, $T_{[s,i]}$ contains a "copy" of $T_{[s,0]} = s_{\downarrow} \cup s^{\uparrow}$.

A κ -Souslin tree T:

 \triangleright Every subtree (downward closed of full size) of τ contains a cone $x^{\uparrow} \cup x_{\downarrow}$ for some $x \in \mathcal{T}$.

A κ -Souslin tree T:

 \triangleright Every subtree (downward closed of full size) of τ contains a cone $x^{\uparrow} \cup x_{\downarrow}$ for some $x \in \mathcal{T}$.

We want a "similar" property for our constructed tree T :

 \blacktriangleright Every subtree of T contains a frozen cone.

Thank you for listening!