
More minimal non-σ-scattered linear orders

Novi Sad Conference
In Set Theory and General Topology

August-2024

Roy Shalev
Bar-Ilan University

Results from https://arxiv.org/abs/2312.17062



Motivation

Let M be a class of linear orders.

Given (L, <L) and (K , <K ) linear orders, we say that L ≤ K if and
only if there exists a function f : L → K such that for all x , y ∈ L,
if x <L y , then f (x) <K f (y).

The minimality question: Is it consistent that there exists a linear
order L ∈ M such that for every K ≤ L in M we have L ≤ K?
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Motivation

We say that a family L ⊆ M is an antichain if any two elements in
L are not ≤-comparable.

The antichain question: What is the largest antichain in class?

We say that two elements (L, <L) and (K , <K ) are near if there
exists some (N, <N) in M such that N ≤ L and N ≤ K .

The pairwise not near question: What is the largest family in M of
pairwise not near elements?
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The wanted class

Recall that a linear order L is scattered iff Q ̸≤ L.

A linear order L is σ-scattered iff it is a union of countably many
scattered linear suborders.

We focus on the class M of all non-σ-scattered linear orders.

This class include:

▶ Aronszan lines;

▶ Real types;

▶ Baumgartner types.
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Trees

Definition
▶ A tree is a poset T = ⟨T ,◁⟩ in which x↓ := {y ∈ T | y ◁ x}

is well-ordered for all x ∈ T ;

▶ The height of x ∈ T is ht(x) := otp(x↓,◁);

▶ The height of T is sup{ht(x) + 1 | x ∈ T};
▶ A κ-tree is a tree of height κ whose levels are of size < κ;

▶ A κ-tree (T ,◁) is Aronszajn if it has no chains of size κ;

▶ A κ-tree (T ,◁) is Souslin if it has no chains or antichains of
size κ.

5 / 21



Trees

Definition
▶ A tree is a poset T = ⟨T ,◁⟩ in which x↓ := {y ∈ T | y ◁ x}

is well-ordered for all x ∈ T ;

▶ The height of x ∈ T is ht(x) := otp(x↓,◁);

▶ The height of T is sup{ht(x) + 1 | x ∈ T};
▶ A κ-tree is a tree of height κ whose levels are of size < κ;

▶ A κ-tree (T ,◁) is Aronszajn if it has no chains of size κ;

▶ A κ-tree (T ,◁) is Souslin if it has no chains or antichains of
size κ.

5 / 21



Trees

Definition
▶ A tree is a poset T = ⟨T ,◁⟩ in which x↓ := {y ∈ T | y ◁ x}

is well-ordered for all x ∈ T ;

▶ The height of x ∈ T is ht(x) := otp(x↓,◁);

▶ The height of T is sup{ht(x) + 1 | x ∈ T};

▶ A κ-tree is a tree of height κ whose levels are of size < κ;

▶ A κ-tree (T ,◁) is Aronszajn if it has no chains of size κ;

▶ A κ-tree (T ,◁) is Souslin if it has no chains or antichains of
size κ.

5 / 21



Trees

Definition
▶ A tree is a poset T = ⟨T ,◁⟩ in which x↓ := {y ∈ T | y ◁ x}

is well-ordered for all x ∈ T ;

▶ The height of x ∈ T is ht(x) := otp(x↓,◁);

▶ The height of T is sup{ht(x) + 1 | x ∈ T};
▶ A κ-tree is a tree of height κ whose levels are of size < κ;

▶ A κ-tree (T ,◁) is Aronszajn if it has no chains of size κ;

▶ A κ-tree (T ,◁) is Souslin if it has no chains or antichains of
size κ.

5 / 21



Trees

Definition
▶ A tree is a poset T = ⟨T ,◁⟩ in which x↓ := {y ∈ T | y ◁ x}

is well-ordered for all x ∈ T ;

▶ The height of x ∈ T is ht(x) := otp(x↓,◁);

▶ The height of T is sup{ht(x) + 1 | x ∈ T};
▶ A κ-tree is a tree of height κ whose levels are of size < κ;

▶ A κ-tree (T ,◁) is Aronszajn if it has no chains of size κ;

▶ A κ-tree (T ,◁) is Souslin if it has no chains or antichains of
size κ.

5 / 21



Trees

Definition
▶ A tree is a poset T = ⟨T ,◁⟩ in which x↓ := {y ∈ T | y ◁ x}

is well-ordered for all x ∈ T ;

▶ The height of x ∈ T is ht(x) := otp(x↓,◁);

▶ The height of T is sup{ht(x) + 1 | x ∈ T};
▶ A κ-tree is a tree of height κ whose levels are of size < κ;

▶ A κ-tree (T ,◁) is Aronszajn if it has no chains of size κ;

▶ A κ-tree (T ,◁) is Souslin if it has no chains or antichains of
size κ.

5 / 21



From trees to linear orders

Assume (T ,⊆) is a tree and T ⊆ <κω := {f : α → ω | α < κ}.

The lexicographic order is a linear order (T , <lex) defined as
follows: For s, t ∈ T ,

s <lex t ⇐⇒ s ⊑ t or s(∆) < t(∆)

where ∆ := min{ξ < min{dom(s), dom(t)} | s(ξ) ̸= t(ξ)}.

If (T ,⊆) is a κ-Aronszajn tree, then (T , <lex) is a κ-Aronszajn line.
For (T ,⊆) is a κ-Souslin tree, then (T , <lex) contains a κ-Souslin
line.
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An uncountable minimal linear order

Theorem (Baumgartner 1982, D. Soukup 2019)

Assuming ♢+, there exists a minimal Souslin line with respect to
the class of uncountable linear orders.

Baumgartner asked if ♢+ could be weakened to ♢ and whether his
argument could be adapted to construct a minimal Aronszajn line
which was not Souslin.

Recently, Cummings, Eisworth and Moore gave a positive answer
to both questions. Furthemore, they gave the first example for
higher analogs of these linear orders.
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Higher analog

Theorem (Cummings-Eisworth-Moore, 2023)

Consistently for each infinite cardinal λ, there exists a minimal
with respect to being non-σ-scattered linear order of size λ+. In
fact, a λ+-Countryman line.

They used ♢ λ to construct a λ+-Aronszajn tree (T ,⊆) where
T ⊆ <λ+

ω which is not λ+-Souslin such that for every antichain
X ⊆ T of size λ+, (X , <lex) is a minimal non-σ scattered linear
order, i.e. for Y ⊆ X such that (Y , <lex) is a non-σ scattered,
then (X , <lex) embeds into (Y , <lex).

It was suggested in [CEM24] that it should be possible to extend
the result to inaccessible cardinals.
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Wanted
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A reduction

The following theorem may be extracted from [CEM24].

Theorem
Assuming T ⊆ <κω is such that:

▶ (T ,⊆) is a normal κ-Aronszajn tree not κ-Souslin tree;

▶ T is ϱ-coherent and ϱ-uniform;

▶ Every subtree of T contains a frozen cone.

Then for every antichain X ⊆ T of size κ, the linear order
(X , <lex) is minimal with respect to being non-σ-scattered.
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Main result

Theorem
Assume κ is a regular uncountable cardinal and Pξ(κ, 2,⊑, κ)
holds for some ordinal ξ ≤ κ.

Then the class Mκ of non-σ-scattered linear orders of size κ has
2κ-many pairwise non-near minimal elements with respect to being
non-σ-scattered.

If ξ < κ, then the elements are all κ-Countryman lines.

Pξ(λ
+, 2,⊑, λ+) is strictly weaker than ♢ λ.
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How to construct the trees?

In a series of papers Brodsky and Rinot presented new foundations
and a new method to construct κ-trees.

The foundations consist of a family of proxy principles P(κ, . . . )
that enable to construct a κ-tree regardless of the nature of the
cardinal κ (being κ = ℵ1, ℵ2, ℵω+1, inaccessible . . . )

The method is known as the microscopic approach.
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The pros of using the microscopic approach

▶ Assuming a consequence of ♢ which also holds in the generic
extension after adding a single Cohen real to a model of CH —
there exists a family of 2ℵ1 many Countryman lines each one is
minimal with respect to being non-σ-scattered and every two
members of the family are not near.

▶ The construction take care of the missing case, inaccessible
cardinals.

▶ Easier to construct many trees which do not embed on a club
into one another.
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Antichain of linear orders

Lemma: If (S , <S , <lS), (T , <T , <lT ) are two lexicographically
ordered κ-Aronszajn trees, X and Y are subsets of S and T
respectively, both of size κ and π : (X , <lS) → (Y , <lT ) is an
order isomorphism, then there exists a club C such that
((X↓) ↾ C , <S , <lS) is tree isomorphic and order isomorphic to
((Y↓) ↾ C , <T , <lT ).

▶ (X↓) ↾ C = {s ∈ S | htS(s) ∈ C & ∃x ∈ X [s ≤S x ]};
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ϱ-modifcations

Next, we describe key ingredients from [CEM24].

A function η : α+ 1 → Z is a modification if α < κ and η changes
values only finitely many times and the changes take place at
successor ordinal below α.

Let ϱ denote the collection of all such modifications.

For η ∈ ϱ and t ∈ <κω with dom(η) ≤ dom(t) let the map
η ∗ t : dom(t) → ω be defined by stipulating:

(η ∗ t)(β) :=

{
t(β) + η(β), if β ∈ dom(η);

t(β), otherwise.
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Coherent and Uniform

Let (T ,⊆) be a tree such that T ⊆ <κω and for all t ∈ T and
β < ht(t) we have t ↾ β ∈ T .

T is ϱ-coherent, if for every t, s ∈ T of the same successor level
the map t − s is a ϱ-modifier.

T is ϱ-uniform, if for every t ∈ T and every ρ-modifier η, if
Im(η ∗ t) ⊆ ω then η ∗ t ∈ T .

For η ∈ ϱ, we define η− : dom(η) → Z by letting η−(α) = −η(α)
for α ∈ dom(η).
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Coherent and Uniform

If T is κ-Aronszajn, then by a theorem of Hausdorff the linear
order (T , <lex) is non-σ-scattered.

If T ⊆ <κω is ϱ-coherent and ϱ-uniform tree, then every subset
X ⊆ T of size < κ is such that (X , <lex) is σ-scattered.

Key idea: Construct a κ-Aronszajn tree T ⊆ <κω such that for
every subtree S (downward closed and of size κ) there exists a
function φ : T → S which is order-preserving, preserves the
<lex-order and incompatability in the tree.

This was achieved in [CEM24] using the following:
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Frozen cone
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Frozen cone

Suppose that T ⊆ <κω is ϱ-coherent and ϱ-uniform.

1. Suppose i < ω and s, t ∈ T .
We say that t is an i-extension of s, written s ⊆i t, if s ⊆ t
and whenever ht(s) ≤ ξ < ht(t), t(ξ) ≥ i .

2. The frozen cone of T determined by s and i , denoted T[s,i ], is
defined by

T[s,i ] := {t ∈ T : t ⊆ s or s ⊆i t}.

Since T is ϱ-uniform, T[s,i ] contains a ”copy” of T[s,0] = s↓ ∪ s↑.
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Frozen cone

A κ-Souslin tree T :

▶ Every subtree (downward closed of full size) of T contains a
cone x↑ ∪ x↓ for some x ∈ T .

We want a ”similar” property for our constructed tree T :

▶ Every subtree of T contains a frozen cone.

20 / 21



Frozen cone

A κ-Souslin tree T :

▶ Every subtree (downward closed of full size) of T contains a
cone x↑ ∪ x↓ for some x ∈ T .

We want a ”similar” property for our constructed tree T :

▶ Every subtree of T contains a frozen cone.

20 / 21



Thank you for listening!
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