More minimal non- σ -scattered linear orders

Novi Sad Conference In Set Theory and General Topology August-2024

> Roy Shalev Bar-Ilan University

Results from https://arxiv.org/abs/2312.17062

Let ${\mathfrak M}$ be a class of linear orders.

Let ${\mathfrak M}$ be a class of linear orders.

Given $(L, <_L)$ and $(K, <_K)$ linear orders, we say that $L \le K$ if and only if there exists a function $f : L \to K$ such that for all $x, y \in L$, if $x <_L y$, then $f(x) <_K f(y)$.

Let \mathfrak{M} be a class of linear orders.

Given $(L, <_L)$ and $(K, <_K)$ linear orders, we say that $L \le K$ if and only if there exists a function $f : L \to K$ such that for all $x, y \in L$, if $x <_L y$, then $f(x) <_K f(y)$.

The minimality question: Is it consistent that there exists a linear order $L \in \mathfrak{M}$ such that for every $K \leq L$ in \mathfrak{M} we have $L \leq K$?

We say that a family $\mathcal{L} \subseteq \mathfrak{M}$ is an antichain if any two elements in \mathcal{L} are not \leq -comparable.

We say that a family $\mathcal{L}\subseteq\mathfrak{M}$ is an antichain if any two elements in $\mathcal L$ are not $\leq\text{-comparable}.$

The antichain question: What is the largest antichain in class?

We say that a family $\mathcal{L} \subseteq \mathfrak{M}$ is an antichain if any two elements in \mathcal{L} are not \leq -comparable.

The antichain question: What is the largest antichain in class?

We say that two elements $(L, <_L)$ and $(K, <_K)$ are near if there exists some $(N, <_N)$ in \mathfrak{M} such that $N \leq L$ and $N \leq K$.

We say that a family $\mathcal{L} \subseteq \mathfrak{M}$ is an antichain if any two elements in \mathcal{L} are not \leq -comparable.

The antichain question: What is the largest antichain in class?

We say that two elements $(L, <_L)$ and $(K, <_K)$ are near if there exists some $(N, <_N)$ in \mathfrak{M} such that $N \leq L$ and $N \leq K$.

The pairwise not near question: What is the largest family in \mathfrak{M} of pairwise not near elements?

Recall that a linear order L is scattered iff $\mathbb{Q} \not\leq L$.

Recall that a linear order L is scattered iff $\mathbb{Q} \not\leq L$.

A linear order *L* is σ -scattered iff it is a union of countably many scattered linear suborders.

Recall that a linear order L is scattered iff $\mathbb{Q} \not\leq L$.

A linear order *L* is σ -scattered iff it is a union of countably many scattered linear suborders.

We focus on the class ${\mathfrak M}$ of all non- $\sigma\text{-scattered}$ linear orders.

Recall that a linear order L is scattered iff $\mathbb{Q} \not\leq L$.

A linear order *L* is σ -scattered iff it is a union of countably many scattered linear suborders.

We focus on the class $\mathfrak M$ of all non- $\sigma\text{-scattered}$ linear orders.

This class include:

- Aronszan lines;
- Real types;
- Baumgartner types.

Definition

• A tree is a poset $T = \langle T, \triangleleft \rangle$ in which $x_{\downarrow} := \{y \in T \mid y \triangleleft x\}$ is well-ordered for all $x \in T$;

- ▶ A tree is a poset $T = \langle T, \triangleleft \rangle$ in which $x_{\downarrow} := \{y \in T \mid y \triangleleft x\}$ is well-ordered for all $x \in T$;
- The height of $x \in T$ is $ht(x) := otp(x_{\downarrow}, \triangleleft)$;

- ▶ A tree is a poset $T = \langle T, \triangleleft \rangle$ in which $x_{\downarrow} := \{y \in T \mid y \triangleleft x\}$ is well-ordered for all $x \in T$;
- ▶ The height of $x \in T$ is $ht(x) := otp(x_{\downarrow}, \triangleleft)$;
- The height of T is $\sup{ht(x) + 1 | x \in T};$

- A tree is a poset T = ⟨T, ⊲⟩ in which x_↓ := {y ∈ T | y ⊲ x} is well-ordered for all x ∈ T;
- ▶ The height of $x \in T$ is $ht(x) := otp(x_{\downarrow}, \triangleleft)$;
- The height of T is $\sup{ht(x) + 1 | x \in T};$
- A κ -tree is a tree of height κ whose levels are of size $< \kappa$;

- A tree is a poset T = ⟨T, ⊲⟩ in which x_↓ := {y ∈ T | y ⊲ x} is well-ordered for all x ∈ T;
- The height of $x \in T$ is $ht(x) := otp(x_{\downarrow}, \triangleleft)$;
- The height of T is $\sup\{ht(x) + 1 \mid x \in T\};$
- A κ -tree is a tree of height κ whose levels are of size $< \kappa$;
- A κ -tree (T, \lhd) is Aronszajn if it has no chains of size κ ;

- ▶ A tree is a poset $T = \langle T, \triangleleft \rangle$ in which $x_{\downarrow} := \{y \in T \mid y \triangleleft x\}$ is well-ordered for all $x \in T$;
- The height of $x \in T$ is $ht(x) := otp(x_{\downarrow}, \triangleleft)$;
- The height of T is $\sup{ht(x) + 1 | x \in T};$
- A κ -tree is a tree of height κ whose levels are of size $< \kappa$;
- A κ -tree (T, \lhd) is Aronszajn if it has no chains of size κ ;
- A κ-tree (T, ⊲) is Souslin if it has no chains or antichains of size κ.

From trees to linear orders

Assume (T, \subseteq) is a tree and $T \subseteq {}^{<\kappa}\omega := \{f : \alpha \to \omega \mid \alpha < \kappa\}.$

From trees to linear orders

Assume (T, \subseteq) is a tree and $T \subseteq {}^{<\kappa}\omega := \{f : \alpha \to \omega \mid \alpha < \kappa\}.$

The lexicographic order is a linear order $(T, <_{lex})$ defined as follows: For $s, t \in T$,

$$s <_{\mathsf{lex}} t \iff s \sqsubseteq t ext{ or } s(\Delta) < t(\Delta)$$

where $\Delta := \min\{\xi < \min\{\operatorname{dom}(s), \operatorname{dom}(t)\} \mid s(\xi) \neq t(\xi)\}.$

From trees to linear orders

Assume (T, \subseteq) is a tree and $T \subseteq {}^{<\kappa}\omega := \{f : \alpha \to \omega \mid \alpha < \kappa\}.$

The lexicographic order is a linear order $(T, <_{\text{lex}})$ defined as follows: For $s, t \in T$,

$$s <_{\mathsf{lex}} t \iff s \sqsubseteq t ext{ or } s(\Delta) < t(\Delta)$$

where $\Delta := \min\{\xi < \min\{\operatorname{dom}(s), \operatorname{dom}(t)\} \mid s(\xi) \neq t(\xi)\}.$

If (T, \subseteq) is a κ -Aronszajn tree, then $(T, <_{\mathsf{lex}})$ is a κ -Aronszajn line. For (T, \subseteq) is a κ -Souslin tree, then $(T, <_{\mathsf{lex}})$ contains a κ -Souslin line.

An uncountable minimal linear order

Theorem (Baumgartner 1982, D. Soukup 2019)

Assuming \Diamond^+ , there exists a minimal Souslin line with respect to the class of uncountable linear orders.

An uncountable minimal linear order

Theorem (Baumgartner 1982, D. Soukup 2019)

Assuming \Diamond^+ , there exists a minimal Souslin line with respect to the class of uncountable linear orders.

Baumgartner asked if \Diamond^+ could be weakened to \Diamond and whether his argument could be adapted to construct a minimal Aronszajn line which was not Souslin.

An uncountable minimal linear order

Theorem (Baumgartner 1982, D. Soukup 2019)

Assuming \Diamond^+ , there exists a minimal Souslin line with respect to the class of uncountable linear orders.

Baumgartner asked if \Diamond^+ could be weakened to \Diamond and whether his argument could be adapted to construct a minimal Aronszajn line which was not Souslin.

Recently, Cummings, Eisworth and Moore gave a positive answer to both questions. Furthemore, they gave the first example for higher analogs of these linear orders.

Higher analog

Theorem (Cummings-Eisworth-Moore, 2023)

Consistently for each infinite cardinal λ , there exists a minimal with respect to being non- σ -scattered linear order of size λ^+ . In fact, a λ^+ -Countryman line.

Higher analog

Theorem (Cummings-Eisworth-Moore, 2023)

Consistently for each infinite cardinal λ , there exists a minimal with respect to being non- σ -scattered linear order of size λ^+ . In fact, a λ^+ -Countryman line.

They used \bigotimes_{λ} to construct a λ^+ -Aronszajn tree (T, \subseteq) where $T \subseteq {}^{<\lambda^+}\omega$ which is not λ^+ -Souslin such that for every antichain $X \subseteq T$ of size λ^+ , $(X, <_{lex})$ is a minimal non- σ scattered linear order, i.e. for $Y \subseteq X$ such that $(Y, <_{lex})$ is a non- σ scattered, then $(X, <_{lex})$ embeds into $(Y, <_{lex})$.

Higher analog

Theorem (Cummings-Eisworth-Moore, 2023)

Consistently for each infinite cardinal λ , there exists a minimal with respect to being non- σ -scattered linear order of size λ^+ . In fact, a λ^+ -Countryman line.

They used \bigotimes_{λ} to construct a λ^+ -Aronszajn tree (T, \subseteq) where $T \subseteq {}^{<\lambda^+}\omega$ which is not λ^+ -Souslin such that for every antichain $X \subseteq T$ of size λ^+ , $(X, <_{lex})$ is a minimal non- σ scattered linear order, i.e. for $Y \subseteq X$ such that $(Y, <_{lex})$ is a non- σ scattered, then $(X, <_{lex})$ embeds into $(Y, <_{lex})$.

It was suggested in [CEM24] that it should be possible to extend the result to inaccessible cardinals.

Wanted

WANTED

A minimal non-σ-scattered linear order of inacc. card.

The following theorem may be extracted from [CEM24].

The following theorem may be extracted from [CEM24].

Theorem Assuming $T \subseteq {}^{<\kappa}\omega$ is such that:

The following theorem may be extracted from [CEM24].

Theorem Assuming $T \subseteq {}^{<\kappa}\omega$ is such that: (T, \subseteq) is a normal κ -Aronszajn tree not κ -Souslin tree;

The following theorem may be extracted from [CEM24].

Theorem Assuming $T \subseteq {}^{<\kappa}\omega$ is such that:

- (T, \subseteq) is a normal κ -Aronszajn tree not κ -Souslin tree;
- T is ρ-coherent and ρ-uniform;

The following theorem may be extracted from [CEM24].

Theorem

Assuming $T \subseteq {}^{<\kappa}\omega$ is such that:

- ▶ (T, \subseteq) is a normal κ -Aronszajn tree not κ -Souslin tree;
- T is ρ-coherent and ρ-uniform;
- Every subtree of T contains a frozen cone.

The following theorem may be extracted from [CEM24].

Theorem

Assuming $T \subseteq {}^{<\kappa}\omega$ is such that:

- (T, \subseteq) is a normal κ -Aronszajn tree not κ -Souslin tree;
- T is ρ-coherent and ρ-uniform;
- Every subtree of T contains a frozen cone.

Then for every antichain $X \subseteq T$ of size κ , the linear order $(X, <_{\text{lex}})$ is minimal with respect to being non- σ -scattered.

Main result

Theorem

Assume κ is a regular uncountable cardinal and $P_{\xi}(\kappa, 2, \sqsubseteq, \kappa)$ holds for some ordinal $\xi \leq \kappa$.

Then the class \mathfrak{M}_{κ} of non- σ -scattered linear orders of size κ has 2^{κ} -many pairwise non-near minimal elements with respect to being non- σ -scattered.

If $\xi < \kappa$, then the elements are all κ -Countryman lines. $P_{\xi}(\lambda^+, 2, \sqsubseteq, \lambda^+)$ is strictly weaker than \bigotimes_{λ} . In a series of papers Brodsky and Rinot presented new foundations and a new method to construct $\kappa\text{-trees}.$

In a series of papers Brodsky and Rinot presented new foundations and a new method to construct $\kappa\text{-trees.}$

The foundations consist of a family of proxy principles $P(\kappa,...)$ that enable to construct a κ -tree regardless of the nature of the cardinal κ (being $\kappa = \aleph_1, \aleph_2, \aleph_{\omega+1}$, inaccessible ...)

In a series of papers Brodsky and Rinot presented new foundations and a new method to construct $\kappa\text{-trees.}$

The foundations consist of a family of proxy principles $P(\kappa,...)$ that enable to construct a κ -tree regardless of the nature of the cardinal κ (being $\kappa = \aleph_1, \aleph_2, \aleph_{\omega+1}$, inaccessible ...)

The method is known as the microscopic approach.

The pros of using the microscopic approach

► Assuming a consequence of \diamondsuit which also holds in the generic extension after adding a single Cohen real to a model of CH — there exists a family of 2^{\aleph_1} many Countryman lines each one is minimal with respect to being non- σ -scattered and every two members of the family are not near.

The pros of using the microscopic approach

► Assuming a consequence of \diamondsuit which also holds in the generic extension after adding a single Cohen real to a model of CH — there exists a family of 2^{\aleph_1} many Countryman lines each one is minimal with respect to being non- σ -scattered and every two members of the family are not near.

► The construction take care of the missing case, inaccessible cardinals.

The pros of using the microscopic approach

► Assuming a consequence of \diamondsuit which also holds in the generic extension after adding a single Cohen real to a model of CH — there exists a family of 2^{\aleph_1} many Countryman lines each one is minimal with respect to being non- σ -scattered and every two members of the family are not near.

► The construction take care of the missing case, inaccessible cardinals.

► Easier to construct many trees which do not embed on a club into one another.

Antichain of linear orders

Lemma: If $(S, <_S, <_{IS})$, $(T, <_T, <_{IT})$ are two lexicographically ordered κ -Aronszajn trees, X and Y are subsets of S and Trespectively, both of size κ and $\pi : (X, <_{IS}) \rightarrow (Y, <_{IT})$ is an order isomorphism, then there exists a club C such that $((X_{\downarrow}) \upharpoonright C, <_S, <_{IS})$ is tree isomorphic and order isomorphic to $((Y_{\downarrow}) \upharpoonright C, <_T, <_{IT})$.

 $\blacktriangleright (X_{\downarrow}) \upharpoonright C = \{s \in S \mid ht_{S}(s) \in C \& \exists x \in X[s \leq s x]\};$

$\varrho\text{-modifcations}$

Next, we describe key ingredients from [CEM24].

ϱ -modifcations

Next, we describe key ingredients from [CEM24].

A function $\eta : \alpha + 1 \to \mathbb{Z}$ is a modification if $\alpha < \kappa$ and η changes values only finitely many times and the changes take place at successor ordinal below α .

Let ϱ denote the collection of all such modifications.

ϱ -modifcations

Next, we describe key ingredients from [CEM24].

A function $\eta : \alpha + 1 \to \mathbb{Z}$ is a modification if $\alpha < \kappa$ and η changes values only finitely many times and the changes take place at successor ordinal below α .

Let ρ denote the collection of all such modifications.

For $\eta \in \rho$ and $t \in {}^{<\kappa}\omega$ with dom $(\eta) \leq \text{dom}(t)$ let the map $\eta * t : \text{dom}(t) \rightarrow \omega$ be defined by stipulating:

$$(\eta * t)(eta) := egin{cases} t(eta) + \eta(eta), & ext{if } eta \in ext{dom}(\eta); \ t(eta), & ext{otherwise}. \end{cases}$$

Let (T, \subseteq) be a tree such that $T \subseteq {}^{<\kappa}\omega$ and for all $t \in T$ and $\beta < ht(t)$ we have $t \upharpoonright \beta \in T$.

Let (T, \subseteq) be a tree such that $T \subseteq {}^{<\kappa}\omega$ and for all $t \in T$ and $\beta < ht(t)$ we have $t \upharpoonright \beta \in T$.

T is ρ -coherent, if for every $t, s \in T$ of the same successor level the map t - s is a ρ -modifier.

Let (T, \subseteq) be a tree such that $T \subseteq {}^{<\kappa}\omega$ and for all $t \in T$ and $\beta < ht(t)$ we have $t \upharpoonright \beta \in T$.

T is ρ -coherent, if for every $t, s \in T$ of the same successor level the map t - s is a ρ -modifier.

T is ρ -uniform, if for every $t \in T$ and every ρ -modifier η , if $\operatorname{Im}(\eta * t) \subseteq \omega$ then $\eta * t \in T$.

Let (T, \subseteq) be a tree such that $T \subseteq {}^{<\kappa}\omega$ and for all $t \in T$ and $\beta < ht(t)$ we have $t \upharpoonright \beta \in T$.

T is ρ -coherent, if for every $t, s \in T$ of the same successor level the map t - s is a ρ -modifier.

T is ρ -uniform, if for every $t \in T$ and every ρ -modifier η , if $\operatorname{Im}(\eta * t) \subseteq \omega$ then $\eta * t \in T$.

For $\eta \in \varrho$, we define $\eta^- : \operatorname{dom}(\eta) \to \mathbb{Z}$ by letting $\eta^-(\alpha) = -\eta(\alpha)$ for $\alpha \in \operatorname{dom}(\eta)$.

If T is κ -Aronszajn, then by a theorem of Hausdorff the linear order ($T, <_{lex}$) is non- σ -scattered.

If T is κ -Aronszajn, then by a theorem of Hausdorff the linear order ($T, <_{lex}$) is non- σ -scattered.

If $T \subseteq {}^{<\kappa}\omega$ is ρ -coherent and ρ -uniform tree, then every subset $X \subseteq T$ of size $<\kappa$ is such that $(X, <_{\text{lex}})$ is σ -scattered.

If T is κ -Aronszajn, then by a theorem of Hausdorff the linear order ($T, <_{lex}$) is non- σ -scattered.

If $T \subseteq {}^{<\kappa}\omega$ is ϱ -coherent and ϱ -uniform tree, then every subset $X \subseteq T$ of size $<\kappa$ is such that $(X, <_{\text{lex}})$ is σ -scattered.

Key idea: Construct a κ -Aronszajn tree $T \subseteq {}^{<\kappa}\omega$ such that for every subtree S (downward closed and of size κ) there exists a function $\varphi : T \to S$ which is order-preserving, preserves the $<_{\text{lex}}$ -order and incompatability in the tree.

If T is κ -Aronszajn, then by a theorem of Hausdorff the linear order ($T, <_{lex}$) is non- σ -scattered.

If $T \subseteq {}^{<\kappa}\omega$ is ϱ -coherent and ϱ -uniform tree, then every subset $X \subseteq T$ of size $<\kappa$ is such that $(X, <_{\text{lex}})$ is σ -scattered.

Key idea: Construct a κ -Aronszajn tree $T \subseteq {}^{<\kappa}\omega$ such that for every subtree S (downward closed and of size κ) there exists a function $\varphi : T \to S$ which is order-preserving, preserves the $<_{\text{lex}}$ -order and incompatability in the tree.

This was achieved in [CEM24] using the following:

Suppose that $T \subseteq {}^{<\kappa}\omega$ is ρ -coherent and ρ -uniform.

1. Suppose $i < \omega$ and $s, t \in T$. We say that t is an *i*-extension of s, written $s \subseteq_i t$, if $s \subseteq t$ and whenever $ht(s) \leq \xi < ht(t), t(\xi) \geq i$.

Suppose that $T \subseteq {}^{<\kappa}\omega$ is ρ -coherent and ρ -uniform.

- 1. Suppose $i < \omega$ and $s, t \in T$. We say that t is an *i*-extension of s, written $s \subseteq_i t$, if $s \subseteq t$ and whenever $ht(s) \leq \xi < ht(t), t(\xi) \geq i$.
- The frozen cone of T determined by s and i, denoted T_[s,i], is defined by

$$T_{[s,i]} := \{t \in T : t \subseteq s \text{ or } s \subseteq_i t\}.$$

Suppose that $T \subseteq {}^{<\kappa}\omega$ is ρ -coherent and ρ -uniform.

- 1. Suppose $i < \omega$ and $s, t \in T$. We say that t is an *i*-extension of s, written $s \subseteq_i t$, if $s \subseteq t$ and whenever $ht(s) \leq \xi < ht(t), t(\xi) \geq i$.
- 2. The frozen cone of T determined by s and i, denoted $T_{[s,i]}$, is defined by

$$T_{[s,i]} := \{t \in T : t \subseteq s \text{ or } s \subseteq_i t\}.$$

Since T is ρ -uniform, $T_{[s,i]}$ contains a "copy" of $T_{[s,0]} = s_{\downarrow} \cup s^{\uparrow}$.

A κ -Souslin tree T:

Every subtree (downward closed of full size) of T contains a cone x[↑] ∪ x_↓ for some x ∈ T.

A κ -Souslin tree T:

Every subtree (downward closed of full size) of *T* contains a cone x[↑] ∪ x_↓ for some x ∈ *T*.

We want a "similar" property for our constructed tree T:

Every subtree of T contains a frozen cone.

Thank you for listening!