Countable models of a theory that interprets an infinite discrete linear order

Predrag Tanović¹

Mathematical Institute SANU, Belgrade

¹Supported by the Science Fund of the Republic of Serbia, Grant No. 7750027: Set-theoretic, model-theoretic and Ramsey-theoretic phenomena in mathematical structures: similarity and diversity–SM[AR](#page-0-0)[T](#page-1-0)

 T – complete first-order theory in a countable L. Consider the isomorphism relation of models with domain ω , $(Mod(T), \geq)$.

T is Borel complete means that " \cong is as complicated as possible".

Question 1

If T_{ϕ} is Borel complete for some L-formula ϕ , must T be Borel complete?

KORKARYKERKER POLO

Question 2

If $T_{\bar{c}}$ is Borel complete, must T be Borel complete?

- **1** Usually, $T_{\overline{c}}$ is obtained "by naming parameters from a model": for $\bar{a} \in M \models T$, add \bar{c} to the language and put $T_{\bar{c}} = T \cup \{ \phi(\bar{x}) \mid M \models \phi(\bar{a}) \}.$ (Every $M \models \top$ produces $\leq \aleph_0$ many models of $T_{\bar{c}}$.) **2** For an *L*-formula $\phi(x)$, T_{ϕ} is obtained as follows: $\textcolor{red}{\bullet}$ Let $L^* = \{ R_{\psi} \mid \psi(\bar{\mathsf{x}})$ L -formula, R_{ψ} is $|\bar{\mathsf{x}}|$ -ary relation}; $\bullet\;\;R_{\psi}$ is interpreted in $M\models\mathcal{T}$ as $\{\bar{a}\in M^{n}\mid M\models\psi(\bar{a})\}$ $\mathbf{3}$ $T^* = Th_{L^*}(M)$ is constant for $M \models T;$
	- $\overline{\mathbf{J}}_{\phi}$ \mathcal{T}_{ϕ} the L^* -theory of the substructure on $\phi(M)$ (constant for $M \models T$).

(Omitting Types Theorem: Every $M_{\phi} \models T_{\phi}$ is $\phi(M)$ for some $M \models T.$

KORKAR KERKER SAGA

[T] "Vaught's conjecture for theories of discretely ordered structures". arXiv:2212.13605

- $-$ T-countable, complete first-order theory;
- $\mathcal{L} = I(\mathcal{T}, \aleph_0) =$ the number of countable models of \mathcal{T} (always $\leqslant 2^{\aleph_0})$;

KORKARYKERKER POLO

Vaught's conjecture (1959)

 $\aleph_0 \leqslant I(\mathcal{T}, \aleph_0) \leqslant 2^{\aleph_0}$ is impossible, regardless of the CH.

VC holds for:

- Strongly minimal T (Marsh 1966)
- Uncountably categorical T (Morley 1967)
- Theories of colored orders (Rubin 1974)
- Theories of one unary operation (Miller 1981)
- Stable theories with Skolem functions (Lascar 1981)
- \bullet N₀-stable T (Shelah 1984)
- \bullet o-minimal T (Mayer 1988)
- Weakly minimal T (Saffe, Buechler, Newelski 1990)
- Varieties (Hart, Starchenko, Valeriote 1994)
- Superstable of finite U-rank T (Buechler 2008)
- \bullet Binary, weakly quasi-o-minimal T (Moconja, T. 2020)
- Weakly o-minimal of finite convexity rank (Kulpeshov 2020)

KORKA SERKER YOUR

– For model theorists, $I(T, \aleph_0) = 2^{\aleph_0}$ means " \cong is complicated"; In general, this is weaker than Borel completeness.

VC from the point of view of first-order model theory:

The classification problem

Assuming that $I(\mathcal{T}, \aleph_0) < 2^{\aleph_0}$, find a "reasonable" system of invariants that describes countable models up to \cong .

KORKAR KERKER SAGA

– For model theorists, $I(T, \aleph_0) = 2^{\aleph_0}$ means " \cong is complicated"; In general, this is weaker than Borel completeness.

VC from the point of view of first-order model theory:

The classification problem

Assuming that $I(\mathcal{T}, \aleph_0) < 2^{\aleph_0}$, find a "reasonable" system of invariants that describes countable models up to \cong .

Strong VC

Every consistent $L_{\omega_1,\omega}$ -sentence has either at most countably many or perfectly many countable models.

KID KA KERKER KID KO

This was formulated and proved for trees by Steel in 1976.

Theories with discrete orders

- $I(\mathcal{T} h(\mathbb{Z},<),\aleph_0) = 2^{\aleph_0};$ models are of the form $\mathbb{L} \times \mathbb{Z}$ (L-any linear order); $Th(\mathbb{Z}, <)$ is Borel complete;
- $Th(D, <)$ Borel complete $((D, <)$ discrete order);

Theorem [T]

If T has a definable (or interpretable) infinite discrete linear order, then $I(T, \aleph_0) = 2^{\aleph_0}$.

In the proof, we start with an infinite discrete order (defined by $\phi(x)$ and $x_1 < x_2$).

- **D** Without loss, assume that T is small $(|\bigcup_n S_n(T)| = \aleph_0)$
- 2 Name an appropriate tuple of parameters \bar{c} and shrink $\phi(x)$ by an adequate $L_{\bar{c}}$ -formula such that:

– the relativization of $T_{\bar{c}}$ at ϕ , $(T_{\bar{c}})_{\phi}$, is interdefinable with $Th(\omega + \omega^*, <);$

3 Then $I((T_{\bar{c}})_{\phi}, \aleph_0) = I(Th(\omega + \omega^*, <), \aleph_0) = 2^{\aleph_0}$ $I((T_{\bar{c}})_{\phi}, \aleph_0) = I(Th(\omega + \omega^*, <), \aleph_0) = 2^{\aleph_0}$ $I((T_{\bar{c}})_{\phi}, \aleph_0) = I(Th(\omega + \omega^*, <), \aleph_0) = 2^{\aleph_0}$ $I((T_{\bar{c}})_{\phi}, \aleph_0) = I(Th(\omega + \omega^*, <), \aleph_0) = 2^{\aleph_0}$ $I((T_{\bar{c}})_{\phi}, \aleph_0) = I(Th(\omega + \omega^*, <), \aleph_0) = 2^{\aleph_0}$ [fo](#page-0-0)[llo](#page-12-0)[ws](#page-0-0)[.](#page-12-0)

$$
T \longmapsto T_{\bar{c}} \longmapsto (T_{\bar{c}})_{\phi} \approx Th(\omega + \omega^*, <)
$$

The following is folklore for any \mathcal{T}^{\prime} , ϕ , and \bar{c} :

\n- If
$$
T'
$$
 is not small, then $I(T', \aleph_0) = 2^{\aleph_0}$;
\n- $I(T'_\phi, \aleph_0) = 2^{\aleph_0} \Rightarrow I(T', \aleph_0) = 2^{\aleph_0}$;
\n- $I(T'_\phi, \aleph_0) = 2^{\aleph_0} \Rightarrow I(T', \aleph_0) = 2^{\aleph_0}$.
\n

Back to T:

$$
2^{\aleph_0} = I(Th(\omega + \omega^*, <), \aleph_0) = I((T_{\overline{c}})_{\phi}, \aleph_0) = I(T_{\overline{c}}, \aleph_0) = I(T, \aleph_0)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Recall: $Th(\omega + \omega^*,<)$ is Borel complete.

Question

If T has a definable (or interpretable) infinite discrete linear order, must T be Borel complete?

Possible proof scheme for T: Prove that " = 2^{\aleph_0} " can be replaced by "Borel complete" in each of the following:

- **1** If T is not small, then $I(T, \aleph_0) = 2^{\aleph_0}$;
- **2** $(T \text{ small})$ $I(T_{\bar{c}}, \aleph_0) = 2^{\aleph_0} \Rightarrow I(T, \aleph_0) = 2^{\aleph_0}$;
- 3 $(T \text{ small})$ $I(T_\phi, \aleph_0) = 2^{\aleph_0} \Rightarrow I(T, \aleph_0) = 2^{\aleph_0}$.

All open;

For general T , it is known that in (1) we cannot make it: there are non-small theories that are not Borel complete, but

KELK KØLK VELKEN EL 1990

Let L be a countable language.

 \mathbb{X}_l – the space of all *L*-structures with domain ω

 $V_{\phi(\bar{n})} = \{ M \in \mathbb{X}_L \mid M \models \phi(\bar{n}) \}$ the basic clopen sets.

- $\bullet \ \mathbb{X}_L$ is a standard Borel space; usually, $\mathbb{X}_L = 2^{\Pi_{R \in L} \omega^{ar(R)}}$ (such that a graph (ω, R) is identified with $R \in 2^{\omega \times \omega}$);
- 2 $Mod(\varphi) = \{ M \in \mathbb{X}_L \mid M \models \varphi \}$ is a invariant Borel subset of \mathbb{X}_l for all $\varphi \in L_{\omega_1,\omega}$;

KORKAR KERKER SAGA

- $\bullet\ \cong_\varphi$ is a invariant Σ^1_1 -subset of $\mathsf{Mod}(\varphi)\times\mathsf{Mod}(\varphi);$
- \bullet Every \cong_{\varnothing} -class is Borel.

Borel reducibility

- \bullet Let E, F be equivalence relations on standard Borel spaces X, Y: E is Borel reducible to F, denoted by $E \leq_B F$, if there is a Borel map $f : X \to Y$ such that $xEy \Leftrightarrow f(x)Ff(y)$.
- \bullet For $\psi\in L_{\omega_1,\omega}$ and $\phi\in L_{\omega_1,\omega}'$ define $\phi\leqslant_B\psi$ if and only if $(\mathsf{Mod}(\phi), \cong_{\phi}) \leqslant_B (\mathsf{Mod}(\psi), \cong_{\psi}).$
- $\bullet \phi \in L_{\omega_1,\omega}$ is Borel-complete if $\psi\leqslant_B\phi$ holds for all $\psi\in L_{\omega_1,\omega}'$ (in any countable L').
- ⁴ A class of structures is Borel complete if it is axiomatized by a Borel complete sentence.

Theorem (Friedman, Stanley (1989))

The following classes are Borel complete: graphs, groups, linear orders, trees.

Question 2 is a part of:

Question (Laskowski)

Can Borel completeness be gained or lost by naming a constant?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Theorem (Rast)

 $T_{\bar{c}}$ is Borel iff T is Borel.