Countable models of a theory that interprets an infinite discrete linear order

Predrag Tanović ¹

Mathematical Institute SANU, Belgrade

¹Supported by the Science Fund of the Republic of Serbia, Grant No. 7750027: Set-theoretic, model-theoretic and Ramsey-theoretic phenomena in mathematical structures: similarity and diversity–SMART

T – complete first-order theory in a countable L. Consider the isomorphism relation of models with domain ω , $(Mod(T), \cong)$.

T is Borel complete means that " \cong is as complicated as possible".

Question 1

If T_{ϕ} is Borel complete for some *L*-formula ϕ , must T be Borel complete?

Question 2

If $T_{\bar{c}}$ is Borel complete, must T be Borel complete?

- ① Usually, $T_{\bar{c}}$ is obtained "by naming parameters from a model": for $\bar{a} \in M \models T$, add \bar{c} to the language and put $T_{\bar{c}} = T \cup \{\phi(\bar{x}) \mid M \models \phi(\bar{a})\}.$
 - (Every $M \models T$ produces $\leqslant \aleph_0$ many models of $T_{\bar{c}}$.)
- ② For an *L*-formula $\phi(x)$, T_{ϕ} is obtained as follows:
 - Let $L^* = \{R_{\psi} \mid \psi(\bar{x}) \text{ L-formula, } R_{\psi} \text{ is } |\bar{x}| \text{-ary relation}\};$
 - **2** R_{ψ} is interpreted in $M \models T$ as $\{\bar{a} \in M^n \mid M \models \psi(\bar{a})\}$
 - $T^* = Th_{L^*}(M) \text{ is constant for } M \models T;$
 - T_{ϕ} the L^* -theory of the substructure on $\phi(M)$ (constant for $M \models T$).

(Omitting Types Theorem: Every $M_{\phi} \models T_{\phi}$ is $\phi(M)$ for some $M \models T$.)

- [T] "Vaught's conjecture for theories of discretely ordered structures". arXiv:2212.13605
- *T*-countable, complete first-order theory;
- $-I(T,\aleph_0)$ = the number of countable models of T (always $\leqslant 2^{\aleph_0}$);

Vaught's conjecture (1959)

 $\aleph_0 \leqslant I(T,\aleph_0) \leqslant 2^{\aleph_0}$ is impossible, regardless of the CH.

VC holds for:

- Strongly minimal T (Marsh 1966)
- Uncountably categorical T (Morley 1967)
- Theories of colored orders (Rubin 1974)
- Theories of one unary operation (Miller 1981)
- Stable theories with Skolem functions (Lascar 1981)
- \aleph_0 -stable T (Shelah 1984)
- o-minimal T (Mayer 1988)
- Weakly minimal T (Saffe, Buechler, Newelski 1990)
- Varieties (Hart, Starchenko, Valeriote 1994)
- Superstable of finite *U*-rank *T* (Buechler 2008)
- Binary, weakly quasi-o-minimal T (Moconja, T. 2020)
- Weakly o-minimal of finite convexity rank (Kulpeshov 2020)

– For model theorists, $I(T,\aleph_0)=2^{\aleph_0}$ means " \cong is complicated"; In general, this is weaker than Borel completeness.

VC from the point of view of first-order model theory:

The classification problem

Assuming that $I(T,\aleph_0) < 2^{\aleph_0}$, find a "reasonable" system of invariants that describes countable models up to \cong .

– For model theorists, $I(T,\aleph_0)=2^{\aleph_0}$ means " \cong is complicated"; In general, this is weaker than Borel completeness.

VC from the point of view of first-order model theory:

The classification problem

Assuming that $I(T,\aleph_0) < 2^{\aleph_0}$, find a "reasonable" system of invariants that describes countable models up to \cong .

Strong VC

Every consistent $L_{\omega_1,\omega}$ -sentence has either at most countably many or perfectly many countable models.

This was formulated and proved for trees by Steel in 1976.

Theories with discrete orders

- $I(Th(\mathbb{Z},<),\aleph_0)=2^{\aleph_0}$; models are of the form $\mathbb{L}\times\mathbb{Z}$ (\mathbb{L} -any linear order); $Th(\mathbb{Z},<)$ is Borel complete;
- Th(D, <) Borel complete ((D, <) discrete order);

Theorem [T]

If T has a definable (or interpretable) infinite discrete linear order, then $I(T,\aleph_0)=2^{\aleph_0}$.

In the proof, we start with an infinite discrete order (defined by $\phi(x)$ and $x_1 < x_2$).

- Without loss, assume that T is small $(|\bigcup_n S_n(T)| = \aleph_0)$
- ② Name an appropriate tuple of parameters \bar{c} and shrink $\phi(x)$ by an adequate $L_{\bar{c}}$ -formula such that:
 - the relativization of $T_{\bar{c}}$ at ϕ , $(T_{\bar{c}})_{\phi}$, is interdefinable with $Th(\omega + \omega^*, <)$:

$$T \longmapsto T_{\bar{c}} \longmapsto (T_{\bar{c}})_{\phi} \approx Th(\omega + \omega^*, <)$$

The following is folklore for any T', ϕ , and \bar{c} :

- If T' is not small, then $I(T',\aleph_0)=2^{\aleph_0}$;
- $I(T'_{\phi}, \aleph_0) = 2^{\aleph_0} \Rightarrow I(T', \aleph_0) = 2^{\aleph_0};$
- $I(T'_{\bar{c}}, \aleph_0) = 2^{\aleph_0} \Rightarrow I(T', \aleph_0) = 2^{\aleph_0}$.

Back to T:

$$2^{\aleph_0} = I(Th(\omega + \omega^*, <), \aleph_0) = I((T_{\bar{c}})_{\phi}, \aleph_0) = I(T_{\bar{c}}, \aleph_0) = I(T, \aleph_0)$$

Recall: $Th(\omega + \omega^*, <)$ is Borel complete.

Question

If $\mathcal T$ has a definable (or interpretable) infinite discrete linear order, must $\mathcal T$ be Borel complete?

Possible proof scheme for T: Prove that "= 2^{\aleph_0} " can be replaced by "Borel complete" in each of the following:

- If T is not small, then $I(T,\aleph_0) = 2^{\aleph_0}$;
- $(T \text{ small}) I(T_{\bar{c}},\aleph_0) = 2^{\aleph_0} \Rightarrow I(T,\aleph_0) = 2^{\aleph_0};$

All open;

For general T, it is known that in (1) we cannot make it: there are non-small theories that are not Borel complete, but

The space of L-structures

Let *L* be a countable language.

 \mathbb{X}_{L} – the space of all L-structures with domain ω

 $V_{\phi(\bar{n})} = \{ M \in \mathbb{X}_L \mid M \models \phi(\bar{n}) \}$ the basic clopen sets.

- ① \mathbb{X}_L is a standard Borel space; usually, $\mathbb{X}_L = 2^{\Pi_{R \in L} \omega^{ar(R)}}$ (such that a graph (ω, R) is identified with $R \in 2^{\omega \times \omega}$);
- ② $Mod(\varphi) = \{ M \in \mathbb{X}_L \mid M \models \varphi \}$ is a invariant Borel subset of \mathbb{X}_L for all $\varphi \in L_{\omega_1,\omega}$;
- **1** Every \cong_{φ} -class is Borel.

Borel reducibility

- **1** Let E, F be equivalence relations on standard Borel spaces X, Y; E is Borel reducible to F, denoted by $E \leq_B F$, if there is a Borel map $f: X \to Y$ such that $xEy \Leftrightarrow f(x)Ff(y)$.
- ② For $\psi \in L_{\omega_1,\omega}$ and $\phi \in L'_{\omega_1,\omega}$ define $\phi \leqslant_B \psi$ if and only if $(Mod(\phi), \cong_{\phi}) \leqslant_B (Mod(\psi), \cong_{\psi})$.
- 4 A class of structures is Borel complete if it is axiomatized by a Borel complete sentence.

Theorem (Friedman, Stanley (1989))

The following classes are Borel complete: graphs, groups, linear orders, trees.

Question 2 is a part of:

Question (Laskowski)

Can Borel completeness be gained or lost by naming a constant?

Theorem (Rast)

 $T_{\bar{c}}$ is Borel iff T is Borel.