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T — complete first-order theory in a countable L. Consider the
isomorphism relation of models with domain w, (Mod(T), =).

T is Borel complete means that " =~ is as complicated as possible”.

If T4 is Borel complete for some L-formula ¢, must T be Borel
complete?

If Tz is Borel complete, must T be Borel complete?




@ Usually, Tz is obtained "by naming parameters from a
model”: for 3€ M |= T, add C to the language and put
Te=Tu{o(x) [ ME¢(a)}.
(Every M |= T produces < Xo many models of T¢.)
@ For an L-formula ¢(x), T4 is obtained as follows:
@ Let L* = {Ry | ¥(X) L-formula, Ry is |X|-ary relation};
@ Ry isinterpreted in M |= T as {3e M" | M = ¢(3)}
© T* = Thyx(M) is constant for M = T;
@ T, — the L*-theory of the substructure on ¢(M) (constant for
MET).
(Omitting Types Theorem: Every My |= Ty is ¢(M) for some
MET.)



[T] " Vaught's conjecture for theories of discretely ordered
structures”. arXiv:2212.13605

— T-countable, complete first-order theory;

— 1(T,Ng) = the number of countable models of T (always < 2%0);

Vaught's conjecture (1959)

No < I(T,Rg) < 2% is impossible, regardless of the CH.




VC holds for:

e Strongly minimal T (Marsh 1966)

e Uncountably categorical T (Morley 1967)

@ Theories of colored orders (Rubin 1974)
Theories of one unary operation (Miller 1981)
Stable theories with Skolem functions (Lascar 1981)
No-stable T (Shelah 1984)
o-minimal T (Mayer 1988)
Weakly minimal T (Saffe, Buechler, Newelski 1990)
Varieties (Hart, Starchenko, Valeriote 1994)
Superstable of finite U-rank T (Buechler 2008)
Binary, weakly quasi-o-minimal T (Moconja, T. 2020)
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Weakly o-minimal of finite convexity rank (Kulpeshov 2020)



— For model theorists, /(T,Rq) = 2% means "= is complicated”;

In general, this is weaker than Borel completeness.

VC from the point of view of first-order model theory:

The classification problem

Assuming that /(T,Rq) < 2%, find a "reasonable” system of
invariants that describes countable models up to =~.




— For model theorists, /(T,Rq) = 2% means "= is complicated”;

In general, this is weaker than Borel completeness.

VC from the point of view of first-order model theory:

The classification problem

Assuming that /(T,Rq) < 2%, find a "reasonable” system of
invariants that describes countable models up to =~.

Every consistent L, ,-sentence has either at most countably many
or perfectly many countable models.

This was formulated and proved for trees by Steel in 1976.



Theories with discrete orders

o I(Th(Z,<),Np) = 2%0; models are of the form L x Z (L-any
linear order); Th(Z,<) is Borel complete;
e Th(D, <) Borel complete ((D, <) — discrete order);

If T has a definable (or interpretable) infinite discrete linear order,
then /(T,Rg) = 2%,

In the proof, we start with an infinite discrete order (defined by
#(x) and x; < x2).
@ Without loss, assume that T is small (||, Sh(T)| = o)
@ Name an appropriate tuple of parameters ¢ and shrink ¢(x)
by an adequate Lz-formula such that:
— the relativization of Tz at ¢, (Tz)g, is interdefinable with
Th(w + w*, <);
© Then I((Tz)p,Ro) = I(Th(w + w*, <), Ng) = 2% follows.



The following is folklore for any T, ¢, and :

o If T is not small, then [(T’,Rg) = 2%°;
o I(T},Ro) = 2% = [(T’,Rg) = 2%;
o I(TLRg) = 2% = [(T',Rg) = 2%,

Back to T:

2% = [(Th(w + w*, <), Ro) = I((Tz)g, Ro) = I(Tz,Ro) = I(T,Np)



Recall: Th(w 4+ w*, <) is Borel complete.

If T has a definable (or interpretable) infinite discrete linear order,
must T be Borel complete?

Possible proof scheme for T: Prove that "= 28" can be replaced
by " Borel complete” in each of the following:

© If T is not small, then /(T,Rg) = 2%,

Q (T small) I(TzRg) = 2% = [(T,Rg) = 2%,

@ (T small) I(Ty,Rg) = 2% = [(T,Rg) = 2%,
All open;

For general T, it is known that in (1) we cannot make it: there are
non-small theories that are not Borel complete, but



The space of L-structures

Let L be a countable language.
X — the space of all L-structures with domain w

Vym = {M e X | M= ¢(n)} the basic clopen sets.
© X, is a standard Borel space; usually, X; = Mrerw® (such
that a graph (w, R) is identified with R € 2**%),
@ Mod(p) ={MeX, | M= ¢} is a invariant Borel subset of
Xy forall pe Ly, w;
@ =, is a invariant ¥i-subset of Mod(p) x Mod(y);

O Every = -class is Borel.



Borel reducibility

©Q Let E, F be equivalence relations on standard Borel spaces
X,Y; E is Borel reducible to F, denoted by E <g F, if there
is a Borel map f : X — Y such that xEy < f(x)Ff(y).

Q@ Foryel, ,and ¢pe L;hw define ¢ <g v if and only if
(Mod(6), ~0) <p (Mod(1), =)

Q ¢ € Ly, is Borel-complete if 1) <g ¢ holds for all ¢y € L,
(in any countable L).

@ A class of structures is Borel complete if it is axiomatized by a
Borel complete sentence.

Theorem (Friedman, Stanley (1989))

The following classes are Borel complete: graphs, groups, linear
orders, trees.




Question 2 is a part of:

Question (Laskowski)

Can Borel completeness be gained or lost by naming a constant?

Theorem (Rast)
Tz is Borel iff T is Borel.




