Ideal topological spaces
Anika Njamcul and Aleksandar Pavlović

We can say that ideals are folklore in mathematics. If \(X \) is a nonempty set, a family \(\mathcal{I} \subset P(X) \) satisfying

(I0) \(\emptyset \in \mathcal{I} \),
(I1) If \(A \in \mathcal{I} \) and \(B \subseteq A \), then \(B \in \mathcal{I} \),
(I2) If \(A, B \in \mathcal{I} \), then \(A \cup B \in \mathcal{I} \),

is called an **ideal** on \(X \).

\{\emptyset\}, \(P(X) \),
principal ideal - \(A \downarrow \),
finite sets - \(\text{Fin} \),
countable sets - \(\mathcal{I}_{\text{count}} \),
cardinality less than \(\kappa \) - \(\mathcal{I}_{<\kappa} \),
closed and discrete sets - \(\mathcal{I}_{\text{cd}} \),
scattered sets (with \(T_1 \)) - \(\mathcal{I}_{\text{sc}} \),
relatively compact sets - \(\mathcal{I}_{K} \),
nowhere dense sets - \(\mathcal{I}_{\text{nwd}} \),
meager sets - \(\mathcal{I}_{\text{mgr}} \),
sets of measure zero - \(\mathcal{I}_{m0} \).

No need to define topological space \(\langle X, \tau \rangle \).
Triplet \(\langle X, \tau, \mathcal{I} \rangle \) is called **ideal topological space**.
Short history

The first steps in introducing topological spaces enhanced by an ideal is due to Kuratowski \cite{4, 5} in 1933, who introduced local function as a generalization to closure.

A little bit later ideals in topological spaces were studied by Vaidyanathaswamy \cite{10} (1944).

1958. Freud \cite{2} generalized Cantor-Bendixson theorem using ideal topological space.

1971. Scheinberg \cite{9} applied ideals in the measure theory.

In 1990 Janković and Hamlett \cite{3} wrote a survey paper on the topic of ideal topological spaces.

Today this paper is a starting point, and a pattern for introducing many variations and generalizations of open sets defined by ideals.
Local function

Definition 1 (Kuratowski 1933) [4] Let \((X, \tau, \mathcal{I}) \) be an ideal topological space. Then

\[
A^*(\mathcal{I}, \tau) = \{ x \in X : A \cap U \notin \mathcal{I} \text{ for every } U \in \tau(x) \}
\]

is called the local function of \(A \) with respect to \(\mathcal{I} \) and \(\tau \).

For \(\mathcal{I} = \{ \emptyset \} \) we have that \(A^*(\mathcal{I}, \tau) = \text{Cl}(A) \).

For \(\mathcal{I} = P(X) \) we have that \(A^*(\mathcal{I}, \tau) = \emptyset \).

For \(\mathcal{I} = \text{Fin} \) we have that \(A^*(\mathcal{I}, \tau) \) is the set of \(\omega \)-accumulation points of \(A \).

For \(\mathcal{I} = \mathcal{I}_{\text{count}} \) we have that \(A^*(\mathcal{I}, \tau) \) is the set of condensation points of \(A \).

The local function has the following properties (see [3]):

1. \(A \subseteq B \Rightarrow A^* \subseteq B^* \);
2. \(A^* = \text{Cl}(A^*) \subseteq \text{Cl}(A) \);
3. \((A^*)^* \subseteq A^* \);
4. \((A \cup B)^* = A^* \cup B^* \);
5. If \(I \in \mathcal{I} \), then \((A \cup I)^* = A^* = (A \setminus I)^* \).
"Idealized" topology

Definition 2 \(\text{Cl}^*(A) = A \cup A^* \) is a Kuratowski closure operator, i.e.

1. \(\text{Cl}^*(\emptyset) = \emptyset \),
2. \(A \subseteq \text{Cl}^*(A) \),
3. \(\text{Cl}^*(A \cup B) = \text{Cl}^*(A) \cup \text{Cl}^*(B) \), and
4. \(\text{Cl}^*(\text{Cl}^*(A)) = \text{Cl}^*(A) \).

And therefore it generates a topology on \(X \)

\[\tau^*(\mathcal{I}) = \{A : \text{Cl}^*(X \setminus A) = X \setminus A\} \]

\[\tau \subseteq \tau^* \subseteq P(X) \]

Set \(A \) is closed in \(\tau^* \) iff \(A^* \subseteq A \).

If \(\Psi(A) = X \setminus (X \setminus A)^* \), then set \(O \in \tau^* \) iff \(O \subseteq \Psi(O) \).

\[\beta(\mathcal{I},\tau) = \{V \setminus I : V \in \tau, I \in \mathcal{I}\} \] is a basis for \(\tau^* \)

\[\tau^* = \tau^{**} \]
For $\mathcal{I} = \{\emptyset\}$ we have that $\tau^*(\mathcal{I}) = \tau$.

For $\mathcal{I} = P(X)$ we have that $\tau^*(\mathcal{I}) = P(X)$.

If $\mathcal{I} \subseteq \mathcal{J}$ then $\tau^*(\mathcal{I}) \subseteq \tau^*(\mathcal{J})$.

If $Fin \subseteq \mathcal{I}$ then $\langle X, \tau^* \rangle$ is T_1 space.

If $\mathcal{I} = Fin$, then $\tau_{ad}(\mathcal{I})$ is the cofinite topology on X.

If $\mathcal{I} = \mathcal{I}_{m0}$ - ideal of the sets of measure zero, then τ^*-Borel sets are precisely the Lebesgue measurable sets. (Scheinberg 1971)[9]

For $\mathcal{I} = \mathcal{I}_{nwd}$ then $A^* = \text{Cl}(\text{Int}(\text{Cl}(A)))$ and $\tau^*(\mathcal{I}_{nwd}) = \tau^\alpha$. ($\alpha$-open sets, $A \subseteq \text{Int}(\text{Cl}(\text{Int}(A)))$ - (Njástad 1965)[6])
Let \(\langle X, \tau, I \rangle \) be an ideal topological space. We say \(\tau \) is compatible with the ideal \(I \), denoted \(\tau \sim I \) if the following holds for every \(A \subseteq X \): if for every \(x \in A \) there exists a \(U \in \tau(x) \) such that \(U \cap A \in I \), then \(A \in I \).

\[
\tau \sim I \text{ implies } \beta = \tau^*
\]

\[
\tau \sim I \text{ iff } A \setminus A^* \in I, \text{ for each } A.
\]

Theorem 1 \(\langle X, \tau \rangle \) is hereditarily Lindelöf iff \(\tau \sim I_{\text{count}} \)

Theorem 2 \(\tau \sim I_{\text{nwd}} \)

Theorem 3 \(\tau \sim I_{\text{mgr}} \)

Theorem 4 Let \(\langle X, \tau, I \rangle \) be an ideal topological space. The following are equivalent.

(a) \(I \sim \tau \) and \(\text{Fin} \subseteq I \).

(b) Scattered sets in \(\langle X, \tau^* \rangle \) are in \(I \).

(c) Discrete sets in \(\langle X, \tau^* \rangle \) are in \(I \).
Theorem 5 (Cantor-Bendixson). A second countable (moreover, hereditarily Lindelof) space can be represented as the union of two sets, one of which is perfect (closed without isolated points) and the other countable.

Theorem 6 (Freud 1958)[2] Let \(\langle X, \tau, \mathcal{I} \rangle \) be an ideal topological space such that \(\mathcal{I} \sim \tau \) and \(Fin \subseteq \mathcal{I} \). If a set \(A \) is closed with respect to \(* \), then \(A \) is the union of a set which is perfect with respect to \(\tau \) and a set in \(\mathcal{I} \).
\(X = X^* \)

Theorem 7 (Samules 1975)\[8\] Let \(\langle X, \tau, \mathcal{I} \rangle \) be an ideal topological space. Then \(X = X^* \) iff \(\tau \cap \mathcal{I} = \{\emptyset\} \).

\(\tau_s \) is the family of regular open sets (\(U = \text{Int}(\text{Cl}(U)) \)) in \(\tau \)

Theorem 8 (Janković Hamlett 1990)\[3\] Let \(\langle X, \tau \rangle \) be a space with an ideal \(\mathcal{I} \) on \(X \). If \(X = X^* \) then \(\tau_s = \tau_s^* \).

It was observed in (Bourbaki 1966)\[1\] that some important topological properties are shared by \(\langle X, \tau \rangle \) and \(\langle X, \tau_s \rangle \). Some of these properties, so called semiregular properties, are: Hausdorffness, property of a space being Urysohn \((T_{2\frac{1}{2}}) \), connectedness, extremal disconnectedness, H-closedness, light compactness (every locally finite collection of open subsets is finite), pseudocompactness, . . .

Theorem 9 Semiregular properties are shared by \(\langle X, \tau \rangle \) and \(\langle X, \tau^* \rangle \) if \(X = X^* \)
A space \(\langle X, \tau \rangle \) is said to be a **Baire space** if the intersection of every countable family of open dense sets in \(\langle X, \tau \rangle \) is dense.

\[
\langle X, \tau \rangle \text{ is a Baire space iff } X = X^*(I_{mgr}).
\]

Space is anticomponent iff the only compact sets are finite.

If \(\langle X, \tau \rangle \) is Hausdorff, then \(\tau^*(I_{\text{count}}), \tau^*(I_{\text{sc}}) \) and \(\tau^*(I_K) \) are anticomponent.

If \(\text{Fin} \subseteq I \) and \(\tau \sim I \) then also \(\tau^*(I) \) is anticomponent (Janković Hamlett 1990)[3].

Theorem 10 (Samuels 1971)[3] If \(X = X^* \) and \(Y \) is regular, then \(f : \langle X, \tau \rangle \rightarrow Y \) is continuous iff \(f : \langle X, \tau^* \rangle \rightarrow Y \) is continuous.
References

