Ideal topological spaces Anika Njamcul and Aleksandar Pavlović

We can say that ideals are folklore in mathematics. If X is a nonempty set, a family $\mathcal{I} \subset P(X)$ satisfying (I0) $\emptyset \in \mathcal{I}$, (I1) If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$, (I2) If $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$, is called an **ideal** on X. $\{\emptyset\}, P(X),$ principal ideal - $A \downarrow$, finite sets - Fin, countable sets - \mathcal{I}_{count} , cardinality less than κ - $\mathcal{I}_{<\kappa}$, closed and discrete sets - \mathcal{I}_{cd} , scattered sets (with T_1) - \mathcal{I}_{sc} , relatively compact sets - \mathcal{I}_K , nowhere dense sets - \mathcal{I}_{nwd} , meager sets - \mathcal{I}_{mqr} , sets of measure zero - \mathcal{I}_{m0} . No need to define topological space $\langle X, \tau \rangle$. Triplet $\langle X, \tau, \mathcal{I} \rangle$ is called **ideal topological space**.

Short history

The first steps in introducing topological spaces enhanced by an ideal is due to Kuratowski [4, 5] in 1933, who introduced local function as a generalization to closure.

A little bit later ideals in topological spaces were studied by Vaidyanathaswamy [10] (1944).

1958. Freud [2] generalized Cantor-Bendixson theorem using ideal topological space.

1971. Scheinberg [9] applied ideals in the measure theory.

In 1990 Janković and Hamlett [3] wrote a survey paper on the topic of ideal topological spaces.

Today this paper is a starting point, and a pattern for introducing many variations and generalizations of open sets defined by ideals.

Local function

Definition 1 (Kuratowski 1933)[4] Let $\langle X, \tau, \mathcal{I} \rangle$ be an ideal topological space. Then $A^*(\mathcal{I}, \tau) = \{ x \in X : A \cap U \notin \mathcal{I} \text{ for every } U \in \tau(x) \}$

is called the local function of A with respect to \mathcal{I} and τ .

For $\mathcal{I} = \{\emptyset\}$ we have that $A^*(\mathcal{I}, \tau) = \operatorname{Cl}(A)$. For $\mathcal{I} = P(X)$ we have that $A^*(\mathcal{I}, \tau) = \emptyset$. For $\mathcal{I} = Fin$ we have that $A^*(\mathcal{I}, \tau)$ is the set of ω -accumulation points of A. For $\mathcal{I} = \mathcal{I}_{count}$ we have that $A^*(\mathcal{I}, \tau)$ is the set of condensation points of A.

The local function has the following properties (see [3]):

(1) $A \subseteq B \Rightarrow A^* \subseteq B^*;$ (2) $A^* = \operatorname{Cl}(A^*) \subseteq \operatorname{Cl}(A);$ (3) $(A^*)^* \subseteq A^*;$ (4) $(A \cup B)^* = A^* \cup B^*$ (5) If $I \in \mathcal{I}$, then $(A \cup I)^* = A^* = (A \setminus I)^*.$ "Idealized" topology

Definition 2 $\operatorname{Cl}^*(A) = A \cup A^*$ is a Kuratowski closure operator, i.e. (1) $\operatorname{Cl}^*(\emptyset) = \emptyset$, (2) $A \subseteq \operatorname{Cl}^*(A)$, (3) $\operatorname{Cl}^*(A \cup B) = \operatorname{Cl}^*(A) \cup \operatorname{Cl}^*(B)$, and (4) $\operatorname{Cl}^*(\operatorname{Cl}^*(A)) = \operatorname{Cl}^*(A)$. and therefore it generates a topology on X

$$\tau^*(\mathcal{I}) = \{ A : \operatorname{Cl}^*(X \setminus A) = X \setminus A \}.$$

 $\tau \subseteq \tau^* \subseteq P(X)$

Set A is closed in τ^* iff $A^* \subseteq A$.

If $\Psi(A) = X \setminus (X \setminus A)^*$, then set $O \in \tau^*$ iff $O \subseteq \Psi(O)$.

 $\beta(\mathcal{I},\tau) = \{V \setminus I : V \in \tau, I \in \mathcal{I}\}$ is a basis for τ^*

 $\tau^* = \tau^{**}$

For $\mathcal{I} = \{\emptyset\}$ we have that $\tau^*(\mathcal{I}) = \tau$.

For $\mathcal{I} = P(X)$ we have that $\tau^*(\mathcal{I}) = P(X)$.

If $\mathcal{I} \subseteq \mathcal{J}$ then $\tau^*(\mathcal{I}) \subseteq \tau^*(\mathcal{J})$

If $Fin \subseteq \mathcal{I}$ then $\langle X, \tau^* \rangle$ is T_1 space.

If $\mathcal{I} = Fin$, then $\tau_{ad}^*(\mathcal{I})$ is the cofinite topology on X.

If $\mathcal{I} = \mathcal{I}_{m0}$ - ideal of the sets of measure zero, then τ^* -Borel sets are precisely the Lebesgue measurable sets. (Scheinberg 1971)[9]

For $\mathcal{I} = \mathcal{I}_{nwd}$ then $A^* = \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(A)))$ and $\tau^*(\mathcal{I}_{nwd}) = \tau^{\alpha}$. (α -open sets, $A \subseteq \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A)))$ - (Njástad 1965)[6])

$\tau \sim \mathcal{I}$

Definition 3 (Njástad 1966)[7] Let $\langle X, \tau, \mathcal{I} \rangle$ be an ideal topological space. We say τ is compatible with the ideal \mathcal{I} , denoted $\tau \sim \mathcal{I}$ if the following holds for every $A \subseteq X$: if for every $x \in A$ there exists a $U \in \tau(x)$ such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$.

 $\tau \sim \mathcal{I} \text{ implies } \beta = \tau^*$ $\tau \sim \mathcal{I} \text{ iff } A \setminus A^* \in \mathcal{I}, \text{ for each } A.$

Theorem 1 $\langle X, \tau \rangle$ is hereditarily Lindelöf iff $\tau \sim \mathcal{I}_{count}$

Theorem $2 \tau \sim \mathcal{I}_{nwd}$

Theorem 3 $au \sim \mathcal{I}_{mgr}$

Theorem 4 Let $\langle X, \tau, \mathcal{I} \rangle$ be an ideal topological space. The following are equivalent. (a) $\mathcal{I} \sim \tau$ and $Fin \subseteq \mathcal{I}$. (b) Scattered sets in $\langle X, \tau^* \rangle$ are in \mathcal{I} . (c) Discrete sets in $\langle X, \tau^* \rangle$ are in \mathcal{I} .

Cantor-Bendixson

Theorem 5 (Cantor-Bendixson). A second countable (moreover, hereditarily Lindelof) space can be represented as the union of two sets, one of which is perfect (closed without isolated points) and the other countable.

Theorem 6 (Freud 1958)[2] Let $\langle X, \tau, \mathcal{I} \rangle$ be an ideal topological space such that $\mathcal{I} \sim \tau$ and $Fin \subseteq \mathcal{I}$. If a set A is closed with respect to *, then A is the union of a set which is perfect with respect to τ and a set in \mathcal{I} .

 $X = X^*$

Theorem 7 (Samules 1975)[8] Let $\langle X, \tau, \mathcal{I} \rangle$ be an ideal topological space. Then $X = X^*$ iff $\tau \cap \mathcal{I} = \{\emptyset\}$.

 τ_s is the family of regular open sets (U = Int(Cl(U))) in τ

Theorem 8 (Janković Hamlett 1990)[3] Let $\langle X, \tau \rangle$ be a space with an ideal \mathcal{I} on X. If $X = X^*$ then $\tau_s = \tau_s^*$.

It was observed in (Bourbaki 1966)[1] that some important topological properties are shared by $\langle X, \tau \rangle$ and $\langle X, \tau_s \rangle$. Some of these properties, so called semiregular properties, are: Hausdorffness, property of a space being Urysohn $(T_{2\frac{1}{2}})$, connectedness, extremal disconnectedness, H-closedness, light compactness (every locally finite collection of open subsets is finite), pseudocompactness, ...

Theorem 9 Semiregular properties are shared by $\langle X, \tau \rangle$ and $\langle X, \tau^* \rangle$ if $X = X^*$

A space $\langle X, \tau \rangle$ is said to a **Baire space** if the intersection of every countable family of open dense sets in $\langle X, \tau \rangle$ is dense.

 $\langle X, \tau \rangle$ is a Baire space iff $X = X^*(\mathcal{I}_{mgr})$.

Space is anticompact iff the only compact sets are finite.

If $\langle X, \tau \rangle$ is Hausdorf, then $\tau^*(\mathcal{I}_{count})$, $\tau^*(\mathcal{I}_{sc})$ and $\tau^*(\mathcal{I}_K)$ are anticompact. If $Fin \subseteq \mathcal{I}$ and $\tau \sim \mathcal{I}$ then also $\tau^*(\mathcal{I})$ is anticompact (Janković Hamlett 1990)[3].

Theorem 10 (Samuels 1971)[8] If $X = X^*$ and Y is regular, then $f : \langle X, \tau \rangle \to Y$ is continuous iff $f : \langle X, \tau^* \rangle \to Y$ is continuous.

References

- BOURBAKI, N. Elements of mathematics. General topology. Part 1. Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
- [2] FREUD, G. Ein Beitrag zu dem Satze von Cantor und Bendixson. Acta Math. Acad. Sci. Hungar. 9 (1958), 333–336.
- [3] JANKOVIĆ, D., AND HAMLETT, T. R. New topologies from old via ideals. Amer. Math. Monthly 97, 4 (1990), 295–310.
- [4] KURATOWSKI, K. Topologie I. Warszawa, 1933.
- [5] KURATOWSKI, K. Topology. Vol. I. New edition, revised and augmented. Translated from the French by J. Jaworowski. Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966.
- [6] NJASTAD, O. On some classes of nearly open sets. Pacific J. Math. 15 (1965), 961–970.
- [7] NJASTAD, O. Remarks on topologies defined by local properties. Avh. Norske Vid.-Akad. Oslo I (N.S.), 8 (1966), 16.
- [8] SAMUELS, P. A topology formed from a given topology and ideal. J. London Math. Soc. (2) 10, 4 (1975), 409–416.
- [9] SCHEINBERG, S. Topologies which generate a complete measure algebra. Advances in Math. 7 (1971), 231–239 (1971).
- [10] VAIDYANATHASWAMY, R. The localisation theory in set-topology. Proc. Indian Acad. Sci., Sect. A. 20 (1944), 51–61.