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We can say that ideals are folklore in mathematics.
If X is a nonempty set, a family I ⊂ P (X) satisfying
(I0) ∅ ∈ I,
(I1) If A ∈ I and B ⊆ A, then B ∈ I,
(I2) If A,B ∈ I, then A ∪B ∈ I,

is called an ideal on X .
{∅}, P (X),
principal ideal - A ↓,
�nite sets - Fin,
countable sets - Icount,
cardinality less than κ - I<κ,
closed and discrete sets - Icd,
scattered sets (with T1) - Isc,
relatively compact sets - IK,
nowhere dense sets - Inwd,
meager sets - Imgr,
sets of measure zero - Im0.
No need to de�ne topological space 〈X, τ〉.
Triplet 〈X, τ, I〉 is called ideal topological space.



Short history

The �rst steps in introducing topological spaces enhanced by an ideal is due to Kuratowski [4, 5]
in 1933, who introduced local function as a generalization to closure.

A little bit later ideals in topological spaces were studied by Vaidyanathaswamy [10] (1944).

1958. Freud [2] generalized Cantor-Bendixson theorem using ideal topological space.

1971. Scheinberg [9] applied ideals in the measure theory.

In 1990 Jankovi¢ and Hamlett [3] wrote a survey paper on the topic of ideal topological spaces.

Today this paper is a starting point, and a pattern for introducing many variations and gener-
alizations of open sets de�ned by ideals.



Local function

De�nition 1 (Kuratowski 1933)[4] Let 〈X, τ, I〉 be an ideal topological space. Then

A∗(I, τ ) = {x ∈ X : A ∩ U 6∈ I for every U ∈ τ (x)}
is called the local function of A with respect to I and τ .

For I = {∅} we have that A∗(I, τ ) = Cl(A).
For I = P (X) we have that A∗(I, τ ) = ∅.
For I = Fin we have that A∗(I, τ ) is the set of ω-accumulation points of A.
For I = Icount we have that A∗(I, τ ) is the set of condensation points of A.

The local function has the following properties (see [3]):
(1) A ⊆ B ⇒ A∗ ⊆ B∗;
(2) A∗ = Cl(A∗) ⊆ Cl(A);
(3) (A∗)∗ ⊆ A∗;
(4) (A ∪B)∗ = A∗ ∪B∗
(5) If I ∈ I, then (A ∪ I)∗ = A∗ = (A \ I)∗.



"Idealized" topology

De�nition 2 Cl∗(A) = A ∪ A∗ is a Kuratowski closure operator, i.e.
(1) Cl∗(∅) = ∅, (2) A ⊆ Cl∗(A),
(3) Cl∗(A ∪B) = Cl∗(A) ∪ Cl∗(B), and (4) Cl∗(Cl∗(A)) = Cl∗(A).
and therefore it generates a topology on X

τ ∗(I) = {A : Cl∗(X \ A) = X \ A}.

τ ⊆ τ ∗ ⊆ P (X)

Set A is closed in τ ∗ i� A∗ ⊆ A.

If Ψ(A) = X \ (X \ A)∗, then set O ∈ τ ∗ i� O ⊆ Ψ(O).

β(I, τ ) = {V \ I : V ∈ τ, I ∈ I} is a basis for τ ∗

τ ∗ = τ ∗∗



For I = {∅} we have that τ ∗(I) = τ .

For I = P (X) we have that τ ∗(I) = P (X).

If I ⊆ J then τ ∗(I) ⊆ τ ∗(J )

If Fin ⊆ I then 〈X, τ ∗〉 is T1 space.

If I = Fin , then τ ∗ad(I) is the co�nite topology on X .

If I = Im0 - ideal of the sets of measure zero, then τ ∗-Borel sets are precisely the Lebesgue
measurable sets. (Scheinberg 1971)[9]

For I = Inwd then A∗ = Cl(Int(Cl(A))) and τ ∗(Inwd) = τα. (α-open sets, A ⊆ Int(Cl(Int(A)))
- (Njástad 1965)[6])



τ ∼ I

De�nition 3 (Njástad 1966)[7] Let 〈X, τ, I〉 be an ideal topological space. We say τ is compatible
with the ideal I, denoted τ ∼ I if the following holds for every A ⊆ X: if for every x ∈ A there
exists a U ∈ τ (x) such that U ∩ A ∈ I, then A ∈ I.

τ ∼ I implies β = τ ∗

τ ∼ I i� A \ A∗ ∈ I, for each A.
Theorem 1 〈X, τ〉 is hereditarily Lindelöf i� τ ∼ Icount
Theorem 2 τ ∼ Inwd
Theorem 3 τ ∼ Imgr

Theorem 4 Let 〈X, τ, I〉 be an ideal topological space. The following are equivalent.
(a) I ∼ τ and Fin ⊆ I.
(b) Scattered sets in 〈X, τ ∗〉 are in I.
(c) Discrete sets in 〈X, τ ∗〉 are in I.



Cantor-Bendixson

Theorem 5 (Cantor-Bendixson). A second countable (moreover, hereditarily Lindelof ) space can
be represented as the union of two sets, one of which is perfect (closed without isolated points) and
the other countable.

Theorem 6 (Freud 1958)[2] Let 〈X, τ, I〉 be an ideal topological space such that I ∼ τ and
Fin ⊆ I. If a set A is closed with respect to ∗, then A is the union of a set which is perfect with
respect to τ and a set in I.



X = X∗

Theorem 7 (Samules 1975)[8] Let 〈X, τ, I〉 be an ideal topological space. Then X = X∗ i�
τ ∩ I = {∅}.

τs is the family of regular open sets (U = Int(Cl(U))) in τ

Theorem 8 (Jankovi¢ Hamlett 1990)[3] Let 〈X, τ〉 be a space with an ideal I on X. If X = X∗

then τs = τs
∗.

It was observed in (Bourbaki 1966)[1] that some important topological properties are shared by
〈X, τ〉 and 〈X, τs〉. Some of these properties, so called semiregular properties, are: Hausdor�ness,
property of a space being Urysohn (T212

), connectedness, extremal disconnectedness, H-closedness,

light compactness (every locally �nite collection of open subsets is �nite), pseudocompactness, . . .

Theorem 9 Semiregular properties are shared by 〈X, τ〉 and 〈X, τ ∗〉 if X = X∗



A space 〈X, τ〉 is said to a Baire space if the intersection of every countable family of open
dense sets in 〈X, τ〉 is dense.

〈X, τ〉 is a Baire space i� X = X∗(Imgr).

Space is anticompact i� the only compact sets are �nite.

If 〈X, τ〉 is Hausdorf, then τ ∗(Icount), τ ∗(Isc) and τ ∗(IK) are anticompact.
If Fin ⊆ I and τ ∼ I then also τ ∗(I) is anticompact (Jankovi¢ Hamlett 1990)[3].

Theorem 10 (Samuels 1971)[8] If X = X∗ and Y is regular, then f : 〈X, τ〉 → Y is continuous
i� f : 〈X, τ ∗〉 → Y is continuous.
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