Preserving continuity in Ideal topological spaces Anika Njamcul and Aleksandar Pavlović

Fast Introduction

Definition 1. (Kuratowski 1933)[3] Let $\langle X, \tau, \mathcal{I} \rangle$ be an ideal topological space. Then

$$A^*(\mathcal{I},\tau) = \{ x \in X : A \cap U \notin \mathcal{I} \text{ for every } U \in \tau(x) \}$$

is called the **local function** of A with respect to \mathcal{I} and τ .

 $Cl^*(A) = A \cup A^*$ $\tau^*(\mathcal{I}) = \{ A : \operatorname{Cl}^*(X \setminus A) = X \setminus A \}.$ F is closed iff $F^* \subseteq F$ $\psi(A) = X \setminus (X \setminus A)^*$ U is open iff $U \subseteq \psi(U)$ $\psi(\tau) = \{\psi(U) : U \in \tau\}.$ $\psi(\tau) \subseteq \tau \subseteq \tau^*$

Previous results

Theorem 1. ([7] Samuels 1971.) If $X = X^*$ ($\mathcal{I} \cap \tau = \{\emptyset\}$) and Y is regular then $f : \langle X, \tau \rangle \to Y$ is continuous iff $f : \langle X, \tau^* \rangle \to Y$ is continuous

Theorem 2. ([4] Natkaniec 1986.) Let $f : X \to \mathbb{R}$, where X is a Polish space with topology τ , and \mathcal{I} a σ -complete ideal on X such that $Fin \subset \mathcal{I}$ and $\mathcal{I} \cap \tau = \{\emptyset\}$. If $f : \langle X, \tau^* \rangle \to \langle R, \mathcal{O}_{nat} \rangle$ is a continuous function, then $f : \langle X, \tau \rangle \to \langle R, \mathcal{O}_{nat} \rangle$ is also continuous.

 $\langle X, \tau, \mathcal{I} \rangle$ is \mathcal{I} -compact ([5, 6] Newcomb 1968., Rančin 1972.) iff for each open cover $\{U_{\lambda} : \lambda \in \Lambda\}$ exists finite subcollection $\{U_{\lambda_k} : k \leq n\}$ such that $X \setminus \bigcup \{U_{\lambda_k} : k \leq n\} \in \mathcal{I}$.

Theorem 3. ([1] Hamlett, Janković 1990.) Let $f : \langle X, \tau, \mathcal{I} \rangle \to \langle Y, \sigma, f[\mathcal{I}] \rangle$ be a bijection such that $\langle X, \tau \rangle$ is \mathcal{I} -compact and $\langle Y, \sigma \rangle$ is Hausdorff. If $f : \langle X, \tau^* \rangle \to \langle Y, \sigma \rangle$ is continuous, then $f : \langle X, \tau^* \rangle \to \langle Y, \sigma^* \rangle$ is a homeomorphism.

Theorem 4. ([2] Hamlett, Rose 1990.) Let $\langle X, \tau, \mathcal{I} \rangle$, $\langle Y, \sigma, \mathcal{J} \rangle$ be ideal topological spaces. Let $f : \langle X, \tau \rangle$, $\langle Y, \langle \psi(\sigma) \rangle \rangle$ be a continuous injection, $\mathcal{J} \sim \sigma$ and $f^{-1}[\mathcal{J}] \subset \mathcal{I}$. Then $\psi(f[A]) \subseteq f[\psi(A)]$, for each $A \subseteq X$.

Theorem 5. ([2] Hamlett, Rose 1990.) Let $\langle X, \tau, \mathcal{I} \rangle$, $\langle Y, \sigma, \mathcal{J} \rangle$ be ideal topological spaces. Let $f : \langle X, \langle \psi(\tau) \rangle \rangle \rightarrow \langle Y, \sigma \rangle$ be an open bijection, $\mathcal{I} \sim \tau$ and $f[\mathcal{I}] \subset \mathcal{J}$. Then $f[\psi(A)] \subseteq \psi(f[A])$, for each $A \subseteq X$.

Theorem 6. ([2] Hamlett, Rose 1990.) Let $\langle X, \tau, \mathcal{I} \rangle \rightarrow \langle Y, \sigma, \mathcal{J} \rangle$ be ideal topological spaces. Let $f: X \rightarrow Y$ be a bijection and $f[\mathcal{I}] = \mathcal{J}$. Then the following conditions are equivalent a) $f: \langle X, \tau^* \rangle \rightarrow \langle Y, \sigma^* \rangle$ is a homeomorphism; b) $f[A^*] = (f[A])^*$, for each $A \subseteq X$; c) $f[\psi(A)] = \psi(f[A])$, for each $A \subseteq X$. Results

Theorem 7. Let $\langle X, \tau_X, \mathcal{I}_X \rangle$ and $\langle Y, \tau_Y, \mathcal{I}_Y \rangle$ be ideal topological spaces. If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is a continuous function and for all $I \in \mathcal{I}_Y$ we have $f^{-1}[I] \in \mathcal{I}_X$. Then there hold the following equivalent conditions:

 $\begin{array}{l} a) \; \forall A \subseteq X \; f[A^*] \subseteq (f[A])^*; \\ b) \; \forall B \subseteq Y \; (f^{-1}[B])^* \subseteq f^{-1}[B^*]. \end{array}$

Proof. Let us prove a). Suppose $\exists A \subseteq X$ and $y \in f[A^*] \setminus (f[A])^*$. Let $x \in A^*$ such that f(x) = y. $\forall U \in \tau_X(x) \ U \cap A \notin \mathcal{I}_X.$ (1) $y \notin (f[A])^*$ $\exists V \in \tau_Y(y)$ such that $V \cap f[A] \in \mathcal{I}_Y$. $f^{-1}[V \cap f[A]] \in \mathcal{I}_X.$ $f^{-1}[V] \cap f^{-1}[f[A]] \in \mathcal{I}_X,$ From $A \subseteq f^{-1}[f[A]]$, we have $f^{-1}[V] \cap A \in \mathcal{I}_X.$ (2)Due the continuity of $f, f^{-1}[V] \in \tau_X(x)$ (2) contradicts (1), proving a).

```
a) \forall A \subseteq X \ f[A^*] \subseteq (f[A])^*;
b) \forall B \subseteq Y \ (f^{-1}[B])^* \subseteq f^{-1}[B^*].
```

```
(a) is equivalent to b)).

Suppose a) holds

Let B \subseteq Y. Then f[(f^{-1}[B])^*] \subseteq (f[f^{-1}[B]])^*

f[(f^{-1}[B])^*] \subseteq B^*.

f^{-1}[f[(f^{-1}[B])^*]] \subseteq f^{-1}[B^*]

(f^{-1}[B])^* \subseteq f^{-1}[B^*].
```

```
Suppose b) holds

Let A \subseteq X.

f^{-1}[(f[A])^*] \supseteq (f^{-1}[f[A]])^* \supseteq A^*.

f[f^{-1}[(f[A])^*]] \supseteq f[A^*].

(f[A])^* \supseteq f[A^*].
```

Example 1. The opposite does not hold even if for each $I \in \mathcal{I}_Y$ holds $f^{-1}[I] \in \mathcal{I}_X$. $\mathcal{I}_X = P(X), A^* = \emptyset, f^{-1}[I] \in \mathcal{I}_X = P(X)$. But f does not have to be continuous, in general. **Theorem 8.** Let $\langle X, \tau_X, \mathcal{I}_X \rangle$ and $\langle Y, \tau_Y, \mathcal{I}_Y \rangle$ be ideal topological spaces. If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is a continuous function and for all $I \in \mathcal{I}_Y$ we have $f^{-1}[I] \in \mathcal{I}_X$. Then there hold the following three equivalent conditions:

a) $\forall A \subseteq X \ f[\overline{A}^{\tau_X^*}] \subseteq \overline{f[A]}^{\tau_Y^*};$ b) $\forall B \subseteq Y \ \overline{(f^{-1}[B])}^{\tau_X^*} \subseteq f^{-1}[\overline{B}^{\tau_Y^*}];$ c) $f: \langle X, \tau_X^* \rangle \to \langle Y, \tau_Y^* \rangle \text{ is a continuous function;}$

Proof. Proving a): $f[\overline{A}^{\tau_X^*}] = f[A \cup A^*] = f[A] \cup f[A^*] \subseteq f[A] \cup (f[A])^* = \overline{f[A]}^{\tau_Y^*}$.

Example 2. Condition a) in Theorem 7 is not equivalent to the continuity of $f : \langle X, \tau_X^* \rangle \rightarrow \langle Y, \tau_Y^* \rangle$.

If $\tau_X = P(X)$, then each mapping is continuous. Let $x \in X$. Let $\{x\} \notin \mathcal{I}_X$ and, for $y = f(x), \{y\} \in \mathcal{I}_Y$ Then $x \in \{x\}^* = \{x\}$, so $y \in f[\{x\}^*] = \{y\}$. But $U \cap f[\{x\}] = \{y\} \in \mathcal{I}_Y$, for each $U \in \tau_Y(y)$, so $y \notin (f[\{x\}])^*$, so condition a) does not hold. If we add that f is a bijection, we obtain the following result.

Theorem 9. Let $\langle X, \tau_X, \mathcal{I}_X \rangle$ and $\langle Y, \tau_Y, \mathcal{I}_Y \rangle$ be ideal topological spaces. If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is a continuous bijection and for all $I \in \mathcal{I}_Y$ we have $f^{-1}[I] \in \mathcal{I}_X$. Then there hold the following equivalent conditions:

a) $\forall A \subseteq X \ \Psi(f[A]) \subseteq f[\Psi(A)];$ b) $\forall B \subseteq Y \ f^{-1}[\Psi(B)] \subseteq \Psi(f^{-1}[B]).$ *Proof.* (a) \Rightarrow b) $B \subseteq Y$. $f^{-1}[\Psi(B)] = f^{-1}[\Psi(f[f^{-1}[B]])] \subseteq f^{-1}[f[\Psi(f^{-1}[B])]] = \Psi(f^{-1}[B])$. (b) \Rightarrow a)) $A \subseteq X$. $\Psi(f[A]) = f[f^{-1}[\Psi(f[A])]] \subseteq f[\Psi(f^{-1}[f[A]])] = f[\Psi(A)].$ (a) Suppose that there exists $A \subseteq X$ such that $\Psi(f[A]) \setminus f[\Psi(A)] \neq \emptyset.$ $\Psi(f[A]) \setminus f[\Psi(A)]$ (3) $= (Y \setminus (Y \setminus f[A])^*) \setminus f[X \setminus (X \setminus A)^*]$ $= (Y \setminus (Y \setminus f[A])^*) \setminus (f[X] \setminus f[(X \setminus A)^*])$ $= (Y \setminus (Y \setminus f[A])^*) \setminus (Y \setminus f[(X \setminus A)^*])$ $= f[(X \setminus A)^*] \setminus (Y \setminus f[A])^*$ $_{\text{(by surjection)}} = f[(X \setminus A)^*] \setminus (f[X] \setminus f[A])^*$ (by injection) = $f[(X \setminus A)^*] \setminus (f[X \setminus A])^* \neq \emptyset$,

but this contradicts condition a) from Theorem 7.

Remark 1. This is also a proof that, if f is bijection, conditions a) and b) from the previous theorem and from Theorem 7 are equivalent. Just the set $B \subset X$ which possibly violates condition a) from Theorem 7 write in form of $X \setminus A$ and apply (3).

Conjecture (20.3.2021.): If for all $I \in \mathcal{I}_Y$ we have $f^{-1}[I] \in \mathcal{I}_X$ then we also have equivalence.

Now, we will consider open mappings.

Theorem 10. Let $\langle X, \tau_X, \mathcal{I}_X \rangle$ and $\langle Y, \tau_Y, \mathcal{I}_Y \rangle$ be ideal topological spaces. If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is an open function and for all $I \in \mathcal{I}_X$ we have $f[I] \in \mathcal{I}_Y$. Then there hold the following equivalent conditions:

 $\begin{array}{l} a) \; \forall A \subseteq X \; f[\Psi(A)] \subseteq \Psi(f[A]); \\ b) \; \forall B \subseteq Y \; \Psi(f^{-1}[B]) \subseteq f^{-1}[\Psi(B)]; \end{array}$

Theorem 11. Let $\langle X, \tau_X, \mathcal{I}_X \rangle$ and $\langle Y, \tau_Y, \mathcal{I}_Y \rangle$ be ideal topological spaces. If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is an open function and for all $I \in \mathcal{I}_X$ we have $f[I] \in \mathcal{I}_Y$. Then $f : \langle X, \tau_X^* \rangle \to \langle Y, \tau_Y^* \rangle$ is an open function.

Theorem 12. Let $\langle X, \tau_X, \mathcal{I}_X \rangle$ and $\langle Y, \tau_Y, \mathcal{I}_Y \rangle$ be ideal topological spaces. If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is an open bijection and for all $I \in \mathcal{I}_X$ we have $f[I] \in \mathcal{I}_Y$. Then there hold the following equivalent conditions:

a) $\forall A \subseteq X \ (f[A])^* \subseteq f[A^*];$ b) $\forall B \subset Y \ f^{-1}[B^*] \subset (f^{-1}[B])^*.$

Corollary 1. ([2] Hamlett, Rose 1990.) Let $\langle X, \tau_X, \mathcal{I}_X \rangle$ and $\langle Y, \tau_Y, \mathcal{I}_Y \rangle$ be ideal topological spaces. If $f : \langle X, \tau_X \rangle \to \langle Y, \tau_Y \rangle$ is homeomorphism and for each $I \subset X$ there holds $I \in \mathcal{I}_X$ iff $f[I] \in \mathcal{I}_Y$. Then the following equivalent conditions hold: a) $f : \langle X, \tau_X^* \rangle \to \langle Y, \tau_Y^* \rangle$ is a homeomorphism; b) $\forall A \subseteq X \ (f[A])^* = f[A^*];$

c) $\forall B \subseteq Y \ f^{-1}[B^*] = (f^{-1}[B])^*.$

References

- [1] HAMLETT, T. R., AND JANKOVIĆ, D. Compactness with respect to an ideal. Boll. Un. Mat. Ital. B (7) 4, 4 (1990), 849–861.
- [2] HAMLETT, T. R., AND ROSE, D. *-topological properties. Internat. J. Math. Math. Sci. 13, 3 (1990), 507-512.
- [3] KURATOWSKI, K. Topologie I. Warszawa, 1933.
- [4] NATKANIEC, T. On *I*-continuity and *I*-semicontinuity points. *Mathematica Slovaca 36*, 3 (1986), 297–312.
- [5] NEWCOMB, JR, R. L. Topologies which are compact modulo an ideal. ProQuest LLC, Ann Arbor, MI, 1968. Thesis (Ph.D.)-University of California, Santa Barbara.
- [6] RANČIN, D. V. Compactness modulo an ideal. Dokl. Akad. Nauk SSSR 202 (1972), 761–764.
- [7] SAMUELS, P. A topology formed from a given topology and ideal. J. London Math. Soc. (2) 10, 4 (1975), 409–416.