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Generic examples of inverse semigroups I

I Fix a set X

I objects D, · · · ⊆ X

I maps (D, f ,R) with f : D → R iso

I composition (D, f ,R) ◦ (D ′, g ,R ′) defined exactly when
R = D ′, and

I given by (D, f ,R) ◦ (D ′, g ,R ′) = (D, f ◦ g ,R ′).

I This is a groupoid. There is a deficit—the partial product.
However,

I There are restriction maps f 7→ f |E etc. where E ⊆ R etc.
making it an inductive groupoid, and so

I there is a pseudoproduct
(D, f ,R)⊗ (D ′, g ,R ′) : = ( · , f |R∩D′ ◦ R∩D′ |g , · ) which is
total (defined for all pairs)
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Generic examples of inverse semigroups I

This gives the symmetric inverse monoid IX

I Elements of IX may be described as binary relations α on X
satisfying αα−1, α−1α ⊆ ιX , with multiplication as binary
relations.

I Extend to partial automorphisms of algebras, spaces, etc.
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Generic examples of inverse semigroups II

I Fix a set X

I objects X/θ, · · · : θ ∈ Eq(X)

I maps (X/θ, f ,X/η) with f : X/θ → X/η iso

I composition (X/θ, f ,X/η) ◦ (X/κ, g ,X/λ) defined exactly
when η = κ, and

I given by (X/θ, f ,X/η) ◦ (X/κ, g ,X/λ) = (X/θ, f ◦ g ,X/λ).

I Also a groupoid

I Also restriction maps (X/θ, f ,X/η) 7→ (X/θ, f ,X/η)|κ
where η ⊆ κ etc. making it an inductive groupoid, and so

I there is a pseudoproduct . . .

I This is the dual symmetric inverse monoid
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Generic examples of inverse semigroups II

I Described in Sets this I ∗X is made up of pairs of epis, or a
matching of their kernels.

I Recall, elements of IX may be described as binary relations
α ⊆ X × X . . .

I Elements of I ∗X may be described as total binary relations on
X satisfying αα−1α ⊆ α, but with a more complicated
multiplication.

I And also as bipartitions i.e., partitions of X t X , with all
blocks transversal

I The respective semilattices-of-idempotents have very special
structures—they are the power set 2X and the (set-) partition
lattice P(X ).
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Other inverse semigroups

Obviously this also works for a wide class of objects (anything with
a notion of subobject or quotient object), giving inverse
semigroups of partial isomorphisms or of bicongruences of:

I vector spaces

I topological spaces

I graphs

I groups

which in some special cases determine the object



Axioms for inverse semigroups

I Algebra, signature (2, 1)

I Assoc. multiplication; inversion s 7→ s−1, such that

I ss−1s = s,

I (st)−1 = t−1s−1,

I ss−1tt−1 = tt−1ss−1

I Books of MV Lawson, M Petrich

I class includes groups, semilattices



Axioms for inverse semigroups

I Algebra, signature (2, 1)

I Assoc. multiplication; inversion s 7→ s−1, such that

I ss−1s = s,

I (st)−1 = t−1s−1,

I ss−1tt−1 = tt−1ss−1

I Books of MV Lawson, M Petrich

I class includes groups, semilattices



Axioms for inverse semigroups

I Algebra, signature (2, 1)

I Assoc. multiplication; inversion s 7→ s−1, such that

I ss−1s = s,

I (st)−1 = t−1s−1,

I ss−1tt−1 = tt−1ss−1

I Books of MV Lawson, M Petrich

I class includes groups, semilattices



Axioms for inverse semigroups

I Algebra, signature (2, 1)

I Assoc. multiplication; inversion s 7→ s−1, such that

I ss−1s = s,

I (st)−1 = t−1s−1,

I ss−1tt−1 = tt−1ss−1

I Books of MV Lawson, M Petrich

I class includes groups, semilattices



Axioms for inverse semigroups

I Algebra, signature (2, 1)

I Assoc. multiplication; inversion s 7→ s−1, such that

I ss−1s = s,

I (st)−1 = t−1s−1,

I ss−1tt−1 = tt−1ss−1

I Books of MV Lawson, M Petrich

I class includes groups, semilattices



Axioms for inverse semigroups

I Algebra, signature (2, 1)

I Assoc. multiplication; inversion s 7→ s−1, such that

I ss−1s = s,

I (st)−1 = t−1s−1,

I ss−1tt−1 = tt−1ss−1

I Books of MV Lawson, M Petrich

I class includes groups, semilattices



Representations of inverse semigroups

Embedding theorems

I Any inverse semigroups S embeds in some IX

I Any inverse sgp S embeds in some I ∗X

I How?

I (Wagner - Preston) with X = |S |
I αs = {(a, b) : as = b & bs−1 = a}
I (Notserp -Rengaw) with X = |S |
I βs = {(a, b) : as = bs−1s}
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Representations of inverse semigroups

The W-P idea extends to representation theorems: here’s a trick

I Let φ : S −→ TX , s 7→ φs

I Set αs := {(a, b) : aφs = b & bφs−1 = a}
I = φs ∩ (φs−1)−1 (as binary relns, cf W - P), αs ∈ IX

I And βs := {(a, b) : aφs = bφs−1s}
I = φs ∨ (φs−1)−1 (as bipartitions), βs ∈ I ∗X
I We depend on transformation reps – Cayley

I Pultr & Trnkova book; algebraic universality property
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Transformation

Figure: StuartVivienne



Importance of representations

I The natural partial order

I IX is ordered

I I ∗X is ordered

I abstract version: s ≤ t ⇐⇒ s = et ∃e = e2

I cf s is a restriction of t

I Order properties understood in terms of IX (inclusion)
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Representations of inverse semigroups

There are differences in the representation properties of IX ,
I ∗X :

I IX ↪→ I ∗X 0 , (X 0 = X t 0 )

I α 7→ α = α ∪ (dα
0 × rα0)

I but I ∗X ↪→ I2X \{∅,X}

I β : A 7→ {x ∈ X : ∃a ∈ A ; (a, x) ∈ β}
I —use trick, and note action fixes ∅,X
I . . . and these are best possible.
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Efficiency of representations again

Degrees of a rep

I Let deg(S) = min{|X | : S ↪→ IX}

I and deg∗(S) = min{|X | : S ↪→ I ∗X}.
I So deg∗ − 1 ≤ deg ≤ 2deg

∗ − 2

I and rep in I ∗X can be much more efficient than in IX !

I –especially for a wide S with relatively many idempotent
atoms compared to its height
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Classifying representations in IX

We have a representation theory for IX

BM Schein (exposition in Howie, Petrich books)

I Any effective representation of S in IX decomposes to a
‘sum’ of transitive ones, and

I every transitive one has an ‘internal’ description in terms of
appropriately defined cosets of closed inverse subsemigroups

I But what about reps in I ∗X ?



Classifying representations in IX

We have a representation theory for IX

BM Schein (exposition in Howie, Petrich books)

I Any effective representation of S in IX decomposes to a
‘sum’ of transitive ones, and

I every transitive one has an ‘internal’ description in terms of
appropriately defined cosets of closed inverse subsemigroups

I But what about reps in I ∗X ?



Classifying representations in IX

We have a representation theory for IX

BM Schein (exposition in Howie, Petrich books)

I Any effective representation of S in IX decomposes to a
‘sum’ of transitive ones, and

I every transitive one has an ‘internal’ description in terms of
appropriately defined cosets of closed inverse subsemigroups

I But what about reps in I ∗X ?



Classifying representations in IX

We have a representation theory for IX

BM Schein (exposition in Howie, Petrich books)

I Any effective representation of S in IX decomposes to a
‘sum’ of transitive ones, and

I every transitive one has an ‘internal’ description in terms of
appropriately defined cosets of closed inverse subsemigroups

I But what about reps in I ∗X ?



Inverse Algebras

The extra structure available in IX and I ∗X

I In any inverse semigroup S , E = E (S) = {e ∈ S : ee = e} is a
semilattice

I S is partially ordered by s ≤ t ⇐⇒ s = et,∃e = e2

I But if (all of!) S is a semilattice, S is called an inverse algebra

I or inverse ∧-semigroup

I Conditional joins: If X ⊆ A is bounded above (by u) then for
all x , y ∈ X , xx−1y = yy−1x etc., and X is called compatible

I S is an inverse ∨-semigroup if any compatible set has a join
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Complete inverse algebras

Extra properties are usually named for properties of E , which often
imply properties of S . Let A be an inverse algebra

I A is complete if and only if E (A) is a complete semilattice.

I such an A posseses a bottom element 0 =
∧
E . . .

I and conditional joins: If X ⊆ A and X is bounded above by
u ∈ A, then X has a least upper bound

I
∨

X =
(∨

x∈X xx−1
)
u = u

(∨
x∈X x−1x

)
I (Ehresmann’s lemma )
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Distributive and Boolean inverse algebras

I A subset X of A is distributive if x(y ∨ z) = xy ∨ xz for all
x , y , z ∈ X with y , z bounded above in A, and

I completely distributive if x(
∨

y∈Y y) =
∨

y∈Y xy for all x ∈ X
and all Y ⊆ X such that Y has an upper bound in A.

I (Note, the calculations are in A, not necessarily in X . And
bounded above in A may be replaced by compatible for the
pair or subset.)

I A is Boolean if E (A) is boolean.
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Generic examples of inverse semigroups are special
examples of inverse algebras?!

I IX

I — is Boolean (i.e. E is boolean)

I I ∗X
I is not Boolean but I think it is still special !
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Atomistic inverse algebras

I An inverse algebra A is atomistic if each element is the join of
the atoms below it.

I For a Boolean A, being atomistic is equivalent to being
atomic, that is, each element is above an atom.
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More on atoms

I Let A be a complete atomistic inverse algebra, with its set of
primitive idempotents (atoms of E (A)) denoted by
P = P (A). Write P0 = P ∪ {0}.

I Let φ : S → A be a homomorphism.

I Then S acts on P0 by conjugation: γs : p 7→ (sφ)−1p(sφ)

I Example: if A is IX , P consists of the singletons of the
diagonal, {(x , x)} . And the action is as usual,
(x , x) 7→ (xs, xs).

I Messier in I ∗X
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Studying representations

A simplification: To avoid writing φ : S ′ → A we consider how
S ′φ = S sits in A. (The congruences on S are well-described.)



The orbital (partial) equivalence

I Define a relation T = TS on the set P as follows: for
p, q ∈ P,

I pTSq if there exists s ∈ S such that q = s−1ps

I T = TS is an equivalence on its domain ⊂ P



The orbital (partial) equivalence

I Define a relation T = TS on the set P as follows: for
p, q ∈ P,

I pTSq if there exists s ∈ S such that q = s−1ps

I T = TS is an equivalence on its domain ⊂ P



The orbital (partial) equivalence

I Define a relation T = TS on the set P as follows: for
p, q ∈ P,

I pTSq if there exists s ∈ S such that q = s−1ps

I T = TS is an equivalence on its domain ⊂ P



More on atoms

A side-trip, useful technically: The Following Are Equivalent:

I q = s−1ps;

I ps = sq 6= 0;

I psq = ps = sq 6= 0;

I psq 6= 0.
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Classifying representations / subsemigroups

Recall the ‘classical’ case:

I Any effective S in IX

I i.e., dom(T ) = P = {(x , x)}
I decomposes to a ‘sum’ of transitive ones

I (T is universal on P)

I each of which uses one orbit

I every transitive one has an ‘internal’ description in S
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Effective; transitive

I effectiveness:

I the subsemigroup S of A is (strongly) effective if there is no
p ∈ P such that ps = 0 for all s ∈ S . (Too strong?)

I the practical idea is that no “smaller” IX can be used,

I So say that S ≤ A is weakly effective if the only local algebra
containing S is A itself: S ≤ eAe implies e = 1. (s = se = es
for all s ∈ S ⇒ e = 1A.)
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Effective; transitive

Transitivity

I Classically: S ≤ IX is transitive if, given any x , y ∈ X , there
is s ∈ S with (x , y) ∈ s. ((x , x) 7→ (y , y))

I abstract version: S is strongly transitive in A if there is only
one orbit of the action, i.e., each atom of A is underneath
some element of S

I implications for the structure of A:
. . . all atoms of A form one D-class. Too strong?

I S is weakly transitive if TS has just one class (AND not
necessarily all of P). That is, for each pair p, q ∈ P such that
pS 6= {0} and qS 66= {0} , p = s−1qs for some s ∈ S .
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Effective; transitive

I Classically, S is transitive [effective] if TS is universal [has
total projections].

I Non-classically, If the S is transitive and weakly effective, then
it is effective; if it is effective and weakly transitive, then it is
transitive.

I So ‘weakly effective and transitive’ means both are weak-sense

I We also have to give something away in the component maps:
say that φ is a lax homomorphism if (st)φ ≤ (sφ)(tφ)
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Theorems

I Any (effective) representation of an inverse semigroup S in a
complete atomistic inverse algebra A is equivalent to a
product of weakly transitive effective lax representations of S .

I Any effective representation of an inverse semigroup S in a
complete atomistic distributive inverse algebra A is equivalent
to a sum of transitive effective representations of S .

I Any effective representation of an inverse semigroup S in a
complete atomic Boolean inverse algebra A is equivalent to an
orthogonal sum of transitive effective representations of S .

I Any effective representation of an inverse semigroup S in a
matroid inverse algebra A is equivalent to a product of
transitive and effective representations of S .
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Theorems need definitions!

I A lattice L is called semimodular if whenever a, b cover z
there exists x ∈ L which covers a and b.

I A lattice L is called a matroid lattice if it is complete,
atomistic and semimodular. (There are some equivalent
formulations...)

I A lattice L is meet-continuous if for any ↑-directed X ⊆ L and
a ∈ L, a ∧ (

∨
X ) =

∨
(a ∧ X ) =

∨
{a ∧ x : x ∈ X}.

I If L is a matroid lattice, then it is meet-continuous.
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Key methods

I Let the blocks of TS be {Pi : i ∈ I} for some index set I .

I Define (for i ∈ I )

ei =
∨
{p : p ∈ Pi} =

∨
Pi

and

I the local algebra Ai = eiAei .

I Also define the mapping φi : S → Ai by

sφi =
∨
{ps : p ∈ Pi}

.

I s 7→ (sφi )

I s =
∨
{sφi}
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