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> Fix a set X

» objects D,--- C X

» maps (D, f,R) with f: D — R iso

» composition (D, f,R) o (D', g, R’) defined exactly when
R= D', and

» given by (D,f,R)o(D',g,R'")=(D,fog,R').

» There are restriction maps f — f|g etc. where E C R etc.
making it an inductive groupoid, and so

> there is a pseudoproduct
(D, f, R) [ (Dl,g, R/): = ( . 7f|RﬁD’ o RmD/|g7 . ) which is
total (defined for all pairs)
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Generic examples of inverse semigroups |

This gives the symmetric inverse monoid .9x

» Elements of .#x may be described as binary relations a on X
satisfying aa™!, a tar C 1x, with multiplication as binary
relations.

» Extend to partial automorphisms of algebras, spaces, etc.
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> Fix a set X

» objects X/0,---: 6 € Eq(X)

» maps (X/0,f,X/n) with f: X/0 — X /n iso

» composition (X/6,f,X/n)o (X/k,g,X/\) defined exactly
when 1 = &, and

» given by (X/0,f,X/n)o (X/k,g,X/\) =(X/0,fog,X/\).

» Also a groupoid

» Also restriction maps (X/60,f, X/n) — (X/0,f,X/n)|x
where 17 C k etc. making it an inductive groupoid, and so

> there is a pseudoproduct ...

» This is the dual symmetric inverse monoid
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Generic examples of inverse semigroups |l

v

Described in Sets this .y is made up of pairs of epis, or a
matching of their kernels.

> Elements of Z¢ may be described as total binary relations on
X satisfying aalar C v, but with a more complicated
multiplication.

» And also as bipartitions i.e., partitions of X LI X, with all
blocks transversal

» The respective semilattices-of-idempotents have very special
structures—they are the power set 2X and the (set-) partition

lattice Z2(X).



Other inverse semigroups

Obviously this also works for a wide class of objects (anything with
a notion of subobject or quotient object), giving inverse
semigroups of partial isomorphisms or of bicongruences of:

» vector spaces

v

topological spaces
» graphs
> groups

which in some special cases determine the object
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» Algebra, signature (2,1)

» Assoc. multiplication; inversion s — s~1 such that
> ssTls =3,

» (st)t=t"1s7L,
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» class includes groups, semilattices



Axioms for inverse semigroups

v

Algebra, signature (2,1)

v

Assoc. multiplication; inversion s +— s~1 such that
> ssTls =3,

(st)" ! =t"1s7L,

ss~htt™1 = tt7lss™!

Books of MV Lawson, M Petrich

v

v

v
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Embedding theorems
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» Any inverse sgp S embeds in some Yy
» How?

» as={(a,b): as = b & bs~! = a}

» Bs ={(a,b): as = bs~1s}
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Representations of inverse semigroups

The W-P idea extends to representation theorems: here's a trick
> Let p: S — Ix, s @s

> Set as :={(a,b): agps = b & bp.-1 = a}
> = ¢s N (ps—1)"! (as binary relns, cfFW - P), as € Fx
> And = {(2,b): ads = bo, 1.}

v

= ¢s V (¢s-1)"" (as bipartitions), Bs € F5
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Representations of inverse semigroups

The W-P idea extends to representation theorems: here's a trick

» We depend on transformation reps — Cayley

> Pultr & Trnkova book; algebraic universality property



Transformation

Figure: Domain: Cumquat bush



Transformation

Figure: Range: Marmalade



Transformation
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Importance of representations

» The natural partial order

» abstract version: s <t <= s=et Je=e?

> cf s is a restriction of t

» Order properties understood in terms of .#x (inclusion)
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There are differences in the representation properties of .Zx,
Iy
> Ix > I (XO=XU0)

> but j; — rj2X\{(Z)7x}
» B: A= {xeX: JacA; (a,x) €}
» —use trick, and note action fixes (), X



Representations of inverse semigroups

There are differences in the representation properties of .Zx,
Ix
> Ix > I (XO=XU0)

> but j;& — j2X\{@7X}

> ...and these are best possible.
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Efficiency of representations again

Degrees of a rep

>

>

>

Let deg(S) = min{|X|: S — Zx}

and deg*(S) = min{|X|: § — %}

So deg* — 1 < deg < 298" _2

and rep in £y can be much more efficient than in #x !

—especially for a wide S with relatively many idempotent
atoms compared to its height
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Classifying representations in .#x

We have a representation theory for .#x
BM Schein (exposition in Howie, Petrich books)

> Any effective representation of S in Zx decomposes to a
‘sum’ of transitive ones, and

> every transitive one has an ‘internal’ description in terms of
appropriately defined cosets of closed inverse subsemigroups
» But what about reps in Zg ?
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Inverse Algebras

The extra structure available in .#x and .73

» But if (all of!) S is a semilattice, S is called an inverse algebra

» Conditional joins: If X C A is bounded above (by u) then for
all x,y € X, xx“ 'y = yy~Ix etc., and X is called compatible

» S is an inverse V-semigroup if any compatible set has a join
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Complete inverse algebras

Extra properties are usually named for properties of E, which often
imply properties of S . Let A be an inverse algebra

» Ais complete if and only if E (A) is a complete semilattice.
» such an A posseses a bottom element 0 = A E. ..

» and conditional joins: If X C A and X is bounded above by
u € A, then X has a least upper bound

» (Ehresmann’s lemma )
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» A subset X of Ais distributive if x(y V z) = xy V xz for all
x,y,z € X with y, z bounded above in A, and

> completely distributive if x(\V/ ,cy y) =V ey xy forall x € X
and all Y C X such that Y has an upper bound in A.

» (Note, the calculations are in A, not necessarily in X. And

bounded above in A may be replaced by compatible for the
pair or subset.)



Distributive and Boolean inverse algebras

» A subset X of Ais distributive if x(y V z) = xy V xz for all
x,y,z € X with y, z bounded above in A, and

> completely distributive if x(\V/ ,cy y) =V ey xy forall x € X
and all Y C X such that Y has an upper bound in A.

» Ais Boolean if E(A) is boolean.
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Generic examples of inverse semigroups are special
examples of inverse algebras?!

ij

>j)’2

> is not Boolean but | think it is still special !
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Atomistic inverse algebras

» An inverse algebra A is atomistic if each element is the join of
the atoms below it.

» For a Boolean A, being atomistic is equivalent to being
atomic, that is, each element is above an atom.
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Let A be a complete atomistic inverse algebra, with its set of
primitive idempotents (atoms of E(A)) denoted by

P = P(A). Write P° = P U {0}.

Let ¢: S — A be a homomorphism.

Then S acts on P° by conjugation: 7s : p > (5¢) "1 p(s¢)
Example: if Ais Zx, P consists of the singletons of the
diagonal, {(x,x)} . And the action is as usual,

(x,x) = (xs, xs).
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More on atoms

> Let A be a complete atomistic inverse algebra, with its set of
primitive idempotents (atoms of E(A)) denoted by
P = P(A). Write P° = P U {0}.

> Let ¢: S — A be a homomorphism.

» Then S acts on P° by conjugation: s : p > (s¢) " !p(s0)

» Example: if Ais Zx, P consists of the singletons of the
diagonal, {(x,x)} . And the action is as usual,
(x,x) = (xs, xs).

> Messier in ¢



Studying representations

A simplification: To avoid writing ¢: S” — A we consider how
S'¢ = S sits in A. (The congruences on S are well-described.)
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The orbital (partial) equivalence

» Define a relation .7 = Js on the set P as follows: for
p.q € P,
» p.7sq if there exists s € S such that g = s~ !ps

» 7 = Js is an equivalence on its domain C P
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More on atoms

A side-trip, useful technically: The Following Are Equivalent:
> g=s"!ps;
> ps=sq #0;
> psq = ps = sq # 0;
> psq # 0.
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Classifying representations / subsemigroups

Recall the ‘classical’ case:
> Any effective S in Ix

» decomposes to a ‘sum’ of transitive ones

» each of which uses one orbit



Classifying representations / subsemigroups

Recall the ‘classical’ case:

> every transitive one has an ‘internal’ description in §
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Effective; transitive

> effectiveness:

» the subsemigroup S of A is (strongly) effective if there is no
p € P such that ps = 0 for all s € S. (Too strong?)

> the practical idea is that no “smaller” .Zx can be used,

» So say that S < A is weakly effective if the only local algebra
containing S is A itself: S < eAe impliese=1. (s =se=es
forallse S =e=1,4.)
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Transitivity
» Classically: S < .#x is transitive if, given any x,y € X, there
is s € S with (x,y) € s. ((x,x) = (v,y))
» abstract version: S is strongly transitive in A if there is only
one orbit of the action, i.e., each atom of A is underneath
some element of S

» implications for the structure of A:
...all atoms of A form one Z-class. Too strong?
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Transitivity
» Classically: S < .#x is transitive if, given any x,y € X, there
is s € S with (x,y) € s. ((x,x) = (v,y))
» abstract version: S is strongly transitive in A if there is only
one orbit of the action, i.e., each atom of A is underneath
some element of S

» S is weakly transitive if Js has just one class (AND not
necessarily all of P). That is, for each pair p, g € P such that
pS # {0} and qS # {0}, p=s"1gs for somescS.
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Effective; transitive

» Classically, S is transitive [effective] if Ts is universal [has
total projections].

» Non-classically, If the S is transitive and weakly effective, then
it is effective; if it is effective and weakly transitive, then it is
transitive.

» So ‘weakly effective and transitive’ means both are weak-sense

» We also have to give something away in the component maps:
say that ¢ is a lax homomorphism if (st)¢ < (s¢)(t¢)



Theorems

» Any (effective) representation of an inverse semigroup S in a
complete atomistic inverse algebra A is equivalent to a
product of weakly transitive effective lax representations of S.



Theorems

» Any effective representation of an inverse semigroup S in a
complete atomistic distributive inverse algebra A is equivalent
to a sum of transitive effective representations of S.



Theorems

> Any effective representation of an inverse semigroup S in a
complete atomic Boolean inverse algebra A is equivalent to an
orthogonal sum of transitive effective representations of S.



Theorems

> Any effective representation of an inverse semigroup S in a
matroid inverse algebra A is equivalent to a product of
transitive and effective representations of S.
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» A lattice L is called semimodular if whenever a, b cover z
there exists x € L which covers a and b.

> A lattice L is called a matroid lattice if it is complete,
atomistic and semimodular. (There are some equivalent
formulations...)

> A lattice L is meet-continuous if for any 1-directed X C L and
ael,an(VX)=V(arX)=\V{aAx: xe X}.



Theorems need definitions!

v

A lattice L is called semimodular if whenever a, b cover z
there exists x € L which covers a and b.

v

A lattice L is called a matroid lattice if it is complete,
atomistic and semimodular. (There are some equivalent
formulations...)

v

A lattice L is meet-continuous if for any P-directed X C L and
ael,an(VX)=V(arX)=\V{aAx: xe X}.

If L is a matroid lattice, then it is meet-continuous.

v



Key methods

> Let the blocks of J5 be {P;: i € I} for some index set /.
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Key methods

v

Define (for i € 1)

eiZ\/{Pil’EPi}:\/Pi

and

v

the local algebra A; = e;jAe;.

v

Also define the mapping ¢; : S — A; by

si=\/{ps: pePi}

> s (s¢))



Key methods

v

Define (for i € 1)

eiZ\/{Pil’EPi}:\/Pi

and

v

the local algebra A; = e;jAe;.

v

Also define the mapping ¢; : S — A; by

si=\/{ps: pePi}

v

s — (soi)
s = V{soi}

v
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