Representing inverse semigroups in complete inverse algebras

Des FitzGerald
University of Tasmania, Hobart

May 16, 2018

Figure: Rocky Cape

Figure: Zabranjeno plivanje!

Figure: After the flood

OUTLINE

Inverse semigroups

Representations of inverse semigroups

Inverse Algebras

Boolean inverse algebras/semigroups

Studying reps, using atoms

Generic examples of inverse semigroups I

- Fix a set X

Generic examples of inverse semigroups I

- Fix a set X
- objects $D, \cdots \subseteq X$

Generic examples of inverse semigroups I

- Fix a set X
- objects $D, \cdots \subseteq X$
- maps (D, f, R) with $f: D \rightarrow R$ iso

Generic examples of inverse semigroups I

- Fix a set X
- objects $D, \cdots \subseteq X$
- maps (D, f, R) with $f: D \rightarrow R$ iso
- composition $(D, f, R) \circ\left(D^{\prime}, g, R^{\prime}\right)$ defined exactly when $R=D^{\prime}$, and

Generic examples of inverse semigroups I

- Fix a set X
- objects $D, \cdots \subseteq X$
- maps (D, f, R) with $f: D \rightarrow R$ iso
- composition $(D, f, R) \circ\left(D^{\prime}, g, R^{\prime}\right)$ defined exactly when $R=D^{\prime}$, and
- given by $(D, f, R) \circ\left(D^{\prime}, g, R^{\prime}\right)=\left(D, f \circ g, R^{\prime}\right)$.

Generic examples of inverse semigroups I

- Fix a set X
- objects $D, \cdots \subseteq X$
- maps (D, f, R) with $f: D \rightarrow R$ iso
- composition $(D, f, R) \circ\left(D^{\prime}, g, R^{\prime}\right)$ defined exactly when $R=D^{\prime}$, and
- given by $(D, f, R) \circ\left(D^{\prime}, g, R^{\prime}\right)=\left(D, f \circ g, R^{\prime}\right)$.
- This is a groupoid. There is a deficit-the partial product. However,

Generic examples of inverse semigroups I

- Fix a set X
- objects $D, \cdots \subseteq X$
- maps (D, f, R) with $f: D \rightarrow R$ iso
- composition $(D, f, R) \circ\left(D^{\prime}, g, R^{\prime}\right)$ defined exactly when $R=D^{\prime}$, and
- given by $(D, f, R) \circ\left(D^{\prime}, g, R^{\prime}\right)=\left(D, f \circ g, R^{\prime}\right)$.
- There are restriction maps $\left.f \mapsto f\right|_{E}$ etc. where $E \subseteq R$ etc. making it an inductive groupoid, and so

Generic examples of inverse semigroups I

- Fix a set X
- objects $D, \cdots \subseteq X$
- maps (D, f, R) with $f: D \rightarrow R$ iso
- composition $(D, f, R) \circ\left(D^{\prime}, g, R^{\prime}\right)$ defined exactly when $R=D^{\prime}$, and
- given by $(D, f, R) \circ\left(D^{\prime}, g, R^{\prime}\right)=\left(D, f \circ g, R^{\prime}\right)$.
- There are restriction maps $\left.f \mapsto f\right|_{E}$ etc. where $E \subseteq R$ etc. making it an inductive groupoid, and so
- there is a pseudoproduct
$(D, f, R) \otimes\left(D^{\prime}, g, R^{\prime}\right):=\left(\cdot,\left.f\right|_{R \cap D^{\prime}} \circ R \cap D^{\prime} \mid g, \cdot\right)$ which is total (defined for all pairs)

Generic examples of inverse semigroups I

This gives the symmetric inverse monoid \mathscr{I}_{X}

- Elements of \mathscr{I}_{X} may be described as binary relations α on X satisfying $\alpha \alpha^{-1}, \alpha^{-1} \alpha \subseteq \iota_{X}$, with multiplication as binary relations.

Generic examples of inverse semigroups I

This gives the symmetric inverse monoid \mathscr{I}_{X}

- Elements of \mathscr{I}_{X} may be described as binary relations α on X satisfying $\alpha \alpha^{-1}, \alpha^{-1} \alpha \subseteq \iota_{X}$, with multiplication as binary relations.
- Extend to partial automorphisms of algebras, spaces, etc.

Generic examples of inverse semigroups II

- Fix a set X

Generic examples of inverse semigroups II

- Fix a set X
- objects $X / \theta, \cdots: \theta \in \mathrm{Eq}(\mathrm{X})$

Generic examples of inverse semigroups II

- Fix a set X
- objects $X / \theta, \cdots: \theta \in \mathrm{Eq}(\mathrm{X})$
- maps $(X / \theta, f, X / \eta)$ with $f: X / \theta \rightarrow X / \eta$ iso

Generic examples of inverse semigroups II

- Fix a set X
- objects $X / \theta, \cdots: \theta \in \mathrm{Eq}(\mathrm{X})$
- maps $(X / \theta, f, X / \eta)$ with $f: X / \theta \rightarrow X / \eta$ iso
- composition $(X / \theta, f, X / \eta) \circ(X / \kappa, g, X / \lambda)$ defined exactly when $\eta=\kappa$, and

Generic examples of inverse semigroups II

- Fix a set X
- objects $X / \theta, \cdots: \theta \in \mathrm{Eq}(\mathrm{X})$
- maps $(X / \theta, f, X / \eta)$ with $f: X / \theta \rightarrow X / \eta$ iso
- composition $(X / \theta, f, X / \eta) \circ(X / \kappa, g, X / \lambda)$ defined exactly when $\eta=\kappa$, and
- given by $(X / \theta, f, X / \eta) \circ(X / \kappa, g, X / \lambda)=(X / \theta, f \circ g, X / \lambda)$.

Generic examples of inverse semigroups II

- Fix a set X
- objects $X / \theta, \cdots: \theta \in \mathrm{Eq}(\mathrm{X})$
- maps $(X / \theta, f, X / \eta)$ with $f: X / \theta \rightarrow X / \eta$ iso
- composition $(X / \theta, f, X / \eta) \circ(X / \kappa, g, X / \lambda)$ defined exactly when $\eta=\kappa$, and
- given by $(X / \theta, f, X / \eta) \circ(X / \kappa, g, X / \lambda)=(X / \theta, f \circ g, X / \lambda)$.
- Also a groupoid

Generic examples of inverse semigroups II

- Fix a set X
- objects $X / \theta, \cdots: \theta \in \mathrm{Eq}(\mathrm{X})$
- maps $(X / \theta, f, X / \eta)$ with $f: X / \theta \rightarrow X / \eta$ iso
- composition $(X / \theta, f, X / \eta) \circ(X / \kappa, g, X / \lambda)$ defined exactly when $\eta=\kappa$, and
- given by $(X / \theta, f, X / \eta) \circ(X / \kappa, g, X / \lambda)=(X / \theta, f \circ g, X / \lambda)$.
- Also a groupoid
- Also restriction maps $\left.(X / \theta, f, X / \eta) \mapsto(X / \theta, f, X / \eta)\right|_{\kappa}$ where $\eta \subseteq \kappa$ etc. making it an inductive groupoid, and so

Generic examples of inverse semigroups II

- Fix a set X
- objects $X / \theta, \cdots: \theta \in \mathrm{Eq}(\mathrm{X})$
- maps $(X / \theta, f, X / \eta)$ with $f: X / \theta \rightarrow X / \eta$ iso
- composition $(X / \theta, f, X / \eta) \circ(X / \kappa, g, X / \lambda)$ defined exactly when $\eta=\kappa$, and
- given by $(X / \theta, f, X / \eta) \circ(X / \kappa, g, X / \lambda)=(X / \theta, f \circ g, X / \lambda)$.
- Also a groupoid
- Also restriction maps $\left.(X / \theta, f, X / \eta) \mapsto(X / \theta, f, X / \eta)\right|_{\kappa}$ where $\eta \subseteq \kappa$ etc. making it an inductive groupoid, and so
- there is a pseudoproduct ...

Generic examples of inverse semigroups II

- Fix a set X
- objects $X / \theta, \cdots: \theta \in \mathrm{Eq}(\mathrm{X})$
- maps $(X / \theta, f, X / \eta)$ with $f: X / \theta \rightarrow X / \eta$ iso
- composition $(X / \theta, f, X / \eta) \circ(X / \kappa, g, X / \lambda)$ defined exactly when $\eta=\kappa$, and
- given by $(X / \theta, f, X / \eta) \circ(X / \kappa, g, X / \lambda)=(X / \theta, f \circ g, X / \lambda)$.
- Also a groupoid
- Also restriction maps $\left.(X / \theta, f, X / \eta) \mapsto(X / \theta, f, X / \eta)\right|_{\kappa}$ where $\eta \subseteq \kappa$ etc. making it an inductive groupoid, and so
- there is a pseudoproduct ...
- This is the dual symmetric inverse monoid

Generic examples of inverse semigroups II

- Described in Sets this \mathscr{I}_{X}^{*} is made up of pairs of epis, or a matching of their kernels.
- Recall, elements of \mathscr{I}_{X} may be described as binary relations $\alpha \subseteq X \times X \ldots$

Generic examples of inverse semigroups II

- Described in Sets this \mathscr{I}_{X}^{*} is made up of pairs of epis, or a matching of their kernels.
- Recall, elements of \mathscr{I}_{X} may be described as binary relations $\alpha \subseteq X \times X \ldots$

Generic examples of inverse semigroups II

- Described in Sets this \mathscr{I}_{X}^{*} is made up of pairs of epis, or a matching of their kernels.
- Elements of \mathscr{I}_{X}^{*} may be described as total binary relations on X satisfying $\alpha \alpha^{-1} \alpha \subseteq \alpha$, but with a more complicated multiplication.

Generic examples of inverse semigroups II

- Described in Sets this \mathscr{I}_{X}^{*} is made up of pairs of epis, or a matching of their kernels.
- Elements of \mathscr{I}_{X}^{*} may be described as total binary relations on X satisfying $\alpha \alpha^{-1} \alpha \subseteq \alpha$, but with a more complicated multiplication.
- And also as bipartitions i.e., partitions of $X \sqcup X$, with all blocks transversal

Generic examples of inverse semigroups II

- Described in Sets this \mathscr{I}_{X}^{*} is made up of pairs of epis, or a matching of their kernels.
- Elements of \mathscr{I}_{X}^{*} may be described as total binary relations on X satisfying $\alpha \alpha^{-1} \alpha \subseteq \alpha$, but with a more complicated multiplication.
- And also as bipartitions i.e., partitions of $X \sqcup X$, with all blocks transversal

Generic examples of inverse semigroups II

- Described in Sets this \mathscr{I}_{X}^{*} is made up of pairs of epis, or a matching of their kernels.
- Elements of \mathscr{I}_{X}^{*} may be described as total binary relations on X satisfying $\alpha \alpha^{-1} \alpha \subseteq \alpha$, but with a more complicated multiplication.
- And also as bipartitions i.e., partitions of $X \sqcup X$, with all blocks transversal
- The respective semilattices-of-idempotents have very special structures-they are the power set 2^{X} and the (set-) partition lattice $\mathscr{P}(X)$.

Other inverse semigroups

Obviously this also works for a wide class of objects (anything with a notion of subobject or quotient object), giving inverse semigroups of partial isomorphisms or of bicongruences of:

- vector spaces
- topological spaces
- graphs
- groups
which in some special cases determine the object

Axioms for inverse semigroups

- Algebra, signature $(2,1)$

Axioms for inverse semigroups

- Algebra, signature $(2,1)$
- Assoc. multiplication; inversion $s \mapsto s^{-1}$, such that
- class includes groups, semilattices

Axioms for inverse semigroups

- Algebra, signature $(2,1)$
- Assoc. multiplication; inversion $s \mapsto s^{-1}$, such that
- $s s^{-1} s=s$,

Axioms for inverse semigroups

- Algebra, signature $(2,1)$
- Assoc. multiplication; inversion $s \mapsto s^{-1}$, such that
- $s s^{-1} s=s$,
- $(s t)^{-1}=t^{-1} s^{-1}$,

Axioms for inverse semigroups

- Algebra, signature $(2,1)$
- Assoc. multiplication; inversion $s \mapsto s^{-1}$, such that
- $s s^{-1} s=s$,
- $(s t)^{-1}=t^{-1} s^{-1}$,
- $s s^{-1} t t^{-1}=t t^{-1} s s^{-1}$
- class includes groups, semilattices

Axioms for inverse semigroups

- Algebra, signature $(2,1)$
- Assoc. multiplication; inversion $s \mapsto s^{-1}$, such that
- $s s^{-1} s=s$,
- $(s t)^{-1}=t^{-1} s^{-1}$,
- $s s^{-1} t t^{-1}=t t^{-1} s s^{-1}$
- Books of MV Lawson, M Petrich

Representations of inverse semigroups

Embedding theorems

- Any inverse semigroups S embeds in some \mathscr{I}_{X}
- How?

Representations of inverse semigroups

Embedding theorems

- Any inverse semigroups S embeds in some \mathscr{I}_{X}
- How?
- (Wagner - Preston) with $X=|S|$
- $\alpha_{s}=\left\{(a, b): a s=b \& b s^{-1}=a\right\}$

Representations of inverse semigroups

Embedding theorems

- Any inverse semigroups S embeds in some \mathscr{I}_{X}
- Any inverse sgp S embeds in some \mathscr{I}_{X}^{*}
- How?
- $\alpha_{s}=\left\{(a, b): a s=b \& b s^{-1}=a\right\}$

Representations of inverse semigroups

Embedding theorems

- Any inverse semigroups S embeds in some \mathscr{I}_{X}
- Any inverse sgp S embeds in some \mathscr{I}_{X}^{*}
- How?
- $\alpha_{s}=\left\{(a, b): a s=b \& b s^{-1}=a\right\}$
- (Notserp -Rengaw) with $X=|S|$

Representations of inverse semigroups

Embedding theorems

- Any inverse semigroups S embeds in some \mathscr{I}_{X}
- Any inverse sgp S embeds in some \mathscr{I}_{X}^{*}
- How?
- $\alpha_{s}=\left\{(a, b): a s=b \& b s^{-1}=a\right\}$
- $\beta_{s}=\left\{(a, b): a s=b s^{-1} s\right\}$

Representations of inverse semigroups

The W-P idea extends to representation theorems: here's a trick

- Let $\phi: S \longrightarrow \mathscr{T}_{X}, s \mapsto \phi_{s}$

Representations of inverse semigroups

The W-P idea extends to representation theorems: here's a trick

- Let $\phi: S \longrightarrow \mathscr{T}_{X}, s \mapsto \phi_{s}$
- Set $\alpha_{s}:=\left\{(a, b): a \phi_{s}=b \& b \phi_{s^{-1}}=a\right\}$

Representations of inverse semigroups

The W-P idea extends to representation theorems: here's a trick

- Let $\phi: S \longrightarrow \mathscr{T}_{X}, s \mapsto \phi_{s}$
- Set $\alpha_{s}:=\left\{(a, b): a \phi_{s}=b \& b \phi_{s^{-1}}=a\right\}$
- $\quad=\phi_{s} \cap\left(\phi_{s^{-1}}\right)^{-1}$ (as binary relns, cf $\mathrm{W}-\mathrm{P}$), $\alpha_{s} \in \mathscr{I}_{X}$

Representations of inverse semigroups

The W-P idea extends to representation theorems: here's a trick

- Let $\phi: S \longrightarrow \mathscr{T}_{X}, s \mapsto \phi_{s}$
- Set $\alpha_{s}:=\left\{(a, b): a \phi_{s}=b \& b \phi_{s^{-1}}=a\right\}$
- $\quad=\phi_{s} \cap\left(\phi_{s^{-1}}\right)^{-1}$ (as binary relns, cf $\mathrm{W}-\mathrm{P}$), $\alpha_{s} \in \mathscr{I}_{X}$
- And $\beta_{s}:=\left\{(a, b): a \phi_{s}=b \phi_{s^{-1}}\right\}$

Representations of inverse semigroups

The W-P idea extends to representation theorems: here's a trick

- Let $\phi: S \longrightarrow \mathscr{T}_{X}, s \mapsto \phi_{s}$
- Set $\alpha_{s}:=\left\{(a, b): a \phi_{s}=b \& b \phi_{s^{-1}}=a\right\}$
- $\quad=\phi_{s} \cap\left(\phi_{s^{-1}}\right)^{-1}$ (as binary relns, of $\mathrm{W}-\mathrm{P}$), $\alpha_{s} \in \mathscr{I}_{X}$
- And $\beta_{s}:=\left\{(a, b): a \phi_{s}=b \phi_{s^{-1}}\right\}$
- $\quad=\phi_{s} \vee\left(\phi_{s^{-1}}\right)^{-1}$ (as bipartitions), $\beta_{s} \in \mathscr{I}_{X}^{*}$

Representations of inverse semigroups

The W-P idea extends to representation theorems: here's a trick

- We depend on transformation reps - Cayley

Representations of inverse semigroups

The W-P idea extends to representation theorems: here's a trick

- We depend on transformation reps - Cayley
- Pultr \& Trnkova book; algebraic universality property

Transformation

Figure: Domain: Cumquat bush

Transformation

Figure: Range: Marmalade

Transformation

—＂C，！．

Importance of representations

- The natural partial order

Importance of representations

- The natural partial order
- \mathscr{I}_{X} is ordered

Importance of representations

- The natural partial order
- \mathscr{I}_{X} is ordered
- \mathscr{I}_{X}^{*} is ordered

Importance of representations

- The natural partial order
- abstract version: $s \leq t \Longleftrightarrow s=e t \exists e=e^{2}$

Importance of representations

- The natural partial order
- abstract version: $s \leq t \Longleftrightarrow s=e t \exists e=e^{2}$
- cf s is a restriction of t

Importance of representations

- The natural partial order
- abstract version: $s \leq t \Longleftrightarrow s=e t \exists e=e^{2}$
- cf s is a restriction of t
- Order properties understood in terms of \mathscr{I}_{X} (inclusion)

Representations of inverse semigroups

There are differences in the representation properties of \mathscr{I}_{X}, \mathscr{I}_{X}^{*} :

- $\mathscr{I}_{X} \hookrightarrow \mathscr{I}_{X^{0}}^{*},\left(X^{0}=X \sqcup 0\right)$

Representations of inverse semigroups

There are differences in the representation properties of \mathscr{I}_{X}, \mathscr{I}_{X}^{*} :

- $\mathscr{I}_{X} \hookrightarrow \mathscr{I}_{X^{0}}^{*},\left(X^{0}=X \sqcup 0\right)$
- $\alpha \mapsto \bar{\alpha}=\alpha \cup\left(\overline{\mathbf{d} \alpha}^{0} \times \overline{\mathbf{r} \alpha}^{0}\right)$

Representations of inverse semigroups

There are differences in the representation properties of \mathscr{I}_{X}, \mathscr{I}_{X}^{*} :

- $\mathscr{I}_{X} \hookrightarrow \mathscr{I}_{X^{0}}^{*},\left(X^{0}=X \sqcup 0\right)$
- but $\mathscr{I}_{X}^{*} \hookrightarrow \mathscr{I}_{2^{X}} \backslash\{\emptyset, X\}$

Representations of inverse semigroups

There are differences in the representation properties of \mathscr{I}_{X}, \mathscr{I}_{X}^{*} :

- $\mathscr{I}_{X} \hookrightarrow \mathscr{I}_{X^{0}}^{*},\left(X^{0}=X \sqcup 0\right)$
- but $\mathscr{I}_{X}^{*} \hookrightarrow \mathscr{I}_{2^{X}} \backslash\{\emptyset, X\}$
- $\bar{\beta}: A \mapsto\{x \in X: \quad \exists a \in A ;(a, x) \in \beta\}$

Representations of inverse semigroups

There are differences in the representation properties of \mathscr{I}_{X}, \mathscr{I}_{X}^{*} :

- $\mathscr{I}_{X} \hookrightarrow \mathscr{I}_{X^{0}}^{*},\left(X^{0}=X \sqcup 0\right)$
- but $\mathscr{I}_{X}^{*} \hookrightarrow \mathscr{I}_{2^{X}} \backslash\{\emptyset, X\}$
- $\bar{\beta}: A \mapsto\{x \in X: \quad \exists a \in A ;(a, x) \in \beta\}$
- —use trick, and note action fixes \emptyset, X

Representations of inverse semigroups

There are differences in the representation properties of \mathscr{I}_{X}, \mathscr{I}_{X}^{*} :

- $\mathscr{I}_{X} \hookrightarrow \mathscr{I}_{X^{0}}^{*},\left(X^{0}=X \sqcup 0\right)$
- but $\mathscr{I}_{X}^{*} \hookrightarrow \mathscr{I}_{2^{X}} \backslash\{\emptyset, X\}$
- ... and these are best possible.

Efficiency of representations again

Degrees of a rep

- Let $\operatorname{deg}(S)=\min \left\{|X|: S \hookrightarrow \mathscr{I}_{X}\right\}$

Efficiency of representations again

Degrees of a rep

- Let $\operatorname{deg}(S)=\min \left\{|X|: S \hookrightarrow \mathscr{I}_{X}\right\}$
- and $\operatorname{deg}^{*}(S)=\min \left\{|X|: S \hookrightarrow \mathscr{I}_{X}^{*}\right\}$.

Efficiency of representations again

Degrees of a rep

- Let $\operatorname{deg}(S)=\min \left\{|X|: S \hookrightarrow \mathscr{I}_{X}\right\}$
- and $\operatorname{deg}^{*}(S)=\min \left\{|X|: S \hookrightarrow \mathscr{I}_{X}^{*}\right\}$.
- So deg $^{*}-1 \leq \operatorname{deg} \leq 2^{\text {deg* }}-2$
- $\mathscr{I}_{X} \hookrightarrow \mathscr{I}_{X^{0}}^{*},\left(X^{0}=X \sqcup 0\right)$
- but $\mathscr{I}_{X}^{*} \hookrightarrow \mathscr{I}_{2^{X}} \backslash\{\emptyset, X\}$

Efficiency of representations again

Degrees of a rep

- Let $\operatorname{deg}(S)=\min \left\{|X|: S \hookrightarrow \mathscr{I}_{X}\right\}$
- and $\operatorname{deg}^{*}(S)=\min \left\{|X|: S \hookrightarrow \mathscr{I}_{X}^{*}\right\}$.
- So deg* $-1 \leq \operatorname{deg} \leq 2^{\text {deg }^{*}}-2$
- and rep in \mathscr{I}_{X}^{*} can be much more efficient than in \mathscr{I}_{X} !

Efficiency of representations again

Degrees of a rep

- Let $\operatorname{deg}(S)=\min \left\{|X|: S \hookrightarrow \mathscr{I}_{X}\right\}$
- and $\operatorname{deg}^{*}(S)=\min \left\{|X|: S \hookrightarrow \mathscr{I}_{X}^{*}\right\}$.
- So deg* $-1 \leq \operatorname{deg} \leq 2^{\text {deg }^{*}}-2$
- and rep in \mathscr{I}_{X}^{*} can be much more efficient than in \mathscr{I}_{X} !
- -especially for a wide S with relatively many idempotent atoms compared to its height

Classifying representations in \mathscr{I}_{X}

We have a representation theory for \mathscr{I}_{X}
BM Schein (exposition in Howie, Petrich books)

- Any effective representation of S in \mathscr{I}_{X} decomposes to a 'sum' of transitive ones, and

Classifying representations in \mathscr{I}_{X}

We have a representation theory for \mathscr{I}_{X}
BM Schein (exposition in Howie, Petrich books)

- Any effective representation of S in \mathscr{I}_{X} decomposes to a 'sum' of transitive ones, and
- every transitive one has an 'internal' description in terms of appropriately defined cosets of closed inverse subsemigroups

Classifying representations in \mathscr{I}_{X}

We have a representation theory for \mathscr{I}_{X}
BM Schein (exposition in Howie, Petrich books)

- Any effective representation of S in \mathscr{I}_{X} decomposes to a 'sum' of transitive ones, and
- every transitive one has an 'internal' description in terms of appropriately defined cosets of closed inverse subsemigroups

Classifying representations in \mathscr{I}_{X}

We have a representation theory for \mathscr{I}_{X}
BM Schein (exposition in Howie, Petrich books)

- Any effective representation of S in \mathscr{I}_{X} decomposes to a 'sum' of transitive ones, and
- every transitive one has an 'internal' description in terms of appropriately defined cosets of closed inverse subsemigroups
- But what about reps in \mathscr{I}_{X}^{*} ?

Inverse Algebras

The extra structure available in \mathscr{I}_{X} and \mathscr{I}_{X}^{*}

- In any inverse semigroup $S, E=E(S)=\{e \in S: e e=e\}$ is a semilattice

Inverse Algebras

The extra structure available in \mathscr{I}_{X} and \mathscr{I}_{X}^{*}

- In any inverse semigroup $S, E=E(S)=\{e \in S: e e=e\}$ is a semilattice
- S is partially ordered by $s \leq t \Longleftrightarrow s=e t, \exists e=e^{2}$

Inverse Algebras

The extra structure available in \mathscr{I}_{X} and \mathscr{I}_{X}^{*}

- In any inverse semigroup $S, E=E(S)=\{e \in S: e e=e\}$ is a semilattice
- S is partially ordered by $s \leq t \Longleftrightarrow s=e t, \exists e=e^{2}$
- But if (all of!) S is a semilattice, S is called an inverse algebra

Inverse Algebras

The extra structure available in \mathscr{I}_{X} and \mathscr{I}_{X}^{*}

- But if (all of!) S is a semilattice, S is called an inverse algebra
- or inverse \wedge-semigroup

Inverse Algebras

The extra structure available in \mathscr{I}_{X} and \mathscr{I}_{X}^{*}

- But if (all of!) S is a semilattice, S is called an inverse algebra
- or inverse \wedge-semigroup

Inverse Algebras

The extra structure available in \mathscr{I}_{X} and \mathscr{I}_{X}^{*}

- But if (all of!) S is a semilattice, S is called an inverse algebra
- Conditional joins: If $X \subseteq A$ is bounded above (by u) then for all $x, y \in X, x x^{-1} y=y y^{-1} x$ etc., and X is called compatible

Inverse Algebras

The extra structure available in \mathscr{I}_{X} and \mathscr{I}_{X}^{*}

- But if (all of!) S is a semilattice, S is called an inverse algebra
- Conditional joins: If $X \subseteq A$ is bounded above (by u) then for all $x, y \in X, x x^{-1} y=y y^{-1} x$ etc., and X is called compatible
- S is an inverse \vee-semigroup if any compatible set has a join

Complete inverse algebras

Extra properties are usually named for properties of E, which often imply properties of S. Let A be an inverse algebra

- A is complete if and only if $E(A)$ is a complete semilattice.

Complete inverse algebras

Extra properties are usually named for properties of E, which often imply properties of S. Let A be an inverse algebra

- A is complete if and only if $E(A)$ is a complete semilattice.
- such an A posseses a bottom element $0=\bigwedge E \ldots$

Complete inverse algebras

Extra properties are usually named for properties of E, which often imply properties of S. Let A be an inverse algebra

- A is complete if and only if $E(A)$ is a complete semilattice.
- such an A posseses a bottom element $0=\bigwedge E \ldots$
- and conditional joins: If $X \subseteq A$ and X is bounded above by $u \in A$, then X has a least upper bound

Complete inverse algebras

Extra properties are usually named for properties of E, which often imply properties of S. Let A be an inverse algebra

- A is complete if and only if $E(A)$ is a complete semilattice.
- such an A posseses a bottom element $0=\bigwedge E \ldots$
- and conditional joins: If $X \subseteq A$ and X is bounded above by $u \in A$, then X has a least upper bound
- $\bigvee X=\left(\bigvee_{x \in X} x x^{-1}\right) u=u\left(\bigvee_{x \in X} x^{-1} x\right)$

Complete inverse algebras

Extra properties are usually named for properties of E, which often imply properties of S. Let A be an inverse algebra

- A is complete if and only if $E(A)$ is a complete semilattice.
- such an A posseses a bottom element $0=\bigwedge E \ldots$
- and conditional joins: If $X \subseteq A$ and X is bounded above by $u \in A$, then X has a least upper bound
- (Ehresmann's lemma)

Distributive and Boolean inverse algebras

- A subset X of A is distributive if $x(y \vee z)=x y \vee x z$ for all $x, y, z \in X$ with y, z bounded above in A, and

Distributive and Boolean inverse algebras

- A subset X of A is distributive if $x(y \vee z)=x y \vee x z$ for all $x, y, z \in X$ with y, z bounded above in A, and
- completely distributive if $x\left(\bigvee_{y \in Y} y\right)=\bigvee_{y \in Y} x y$ for all $x \in X$ and all $Y \subseteq X$ such that Y has an upper bound in A.

Distributive and Boolean inverse algebras

- A subset X of A is distributive if $x(y \vee z)=x y \vee x z$ for all $x, y, z \in X$ with y, z bounded above in A, and
- completely distributive if $x\left(\bigvee_{y \in Y} y\right)=\bigvee_{y \in Y} x y$ for all $x \in X$ and all $Y \subseteq X$ such that Y has an upper bound in A.
- (Note, the calculations are in A, not necessarily in X. And bounded above in A may be replaced by compatible for the pair or subset.)

Distributive and Boolean inverse algebras

- A subset X of A is distributive if $x(y \vee z)=x y \vee x z$ for all $x, y, z \in X$ with y, z bounded above in A, and
- completely distributive if $x\left(\bigvee_{y \in Y} y\right)=\bigvee_{y \in Y} x y$ for all $x \in X$ and all $Y \subseteq X$ such that Y has an upper bound in A.
- A is Boolean if $E(A)$ is boolean.

Generic examples of inverse semigroups are special examples of inverse algebras?!

Generic examples of inverse semigroups are special examples of inverse algebras?!

- \mathscr{I}_{X}

Generic examples of inverse semigroups are special examples of inverse algebras?!

- \mathscr{I}_{X}
- - is Boolean (i.e. E is boolean)

Generic examples of inverse semigroups are special examples of inverse algebras?!

- \mathscr{I}_{X}
- \mathscr{I}_{X}^{*}

Generic examples of inverse semigroups are special examples of inverse algebras?!

- \mathscr{I}_{X}
- \mathscr{I}_{X}^{*}
- is not Boolean but I think it is still special !

Atomistic inverse algebras

- An inverse algebra A is atomistic if each element is the join of the atoms below it.

Atomistic inverse algebras

- An inverse algebra A is atomistic if each element is the join of the atoms below it.
- For a Boolean A, being atomistic is equivalent to being atomic, that is, each element is above an atom.

More on atoms

- Let A be a complete atomistic inverse algebra, with its set of primitive idempotents (atoms of $E(A)$) denoted by $P=P(A)$. Write $P^{0}=P \cup\{0\}$.

More on atoms

- Let A be a complete atomistic inverse algebra, with its set of primitive idempotents (atoms of $E(A)$) denoted by $P=P(A)$. Write $P^{0}=P \cup\{0\}$.
- Let $\phi: S \rightarrow A$ be a homomorphism.

More on atoms

- Let A be a complete atomistic inverse algebra, with its set of primitive idempotents (atoms of $E(A)$) denoted by $P=P(A)$. Write $P^{0}=P \cup\{0\}$.
- Let $\phi: S \rightarrow A$ be a homomorphism.
- Then S acts on P^{0} by conjugation: $\gamma_{s}: p \mapsto(s \phi)^{-1} p(s \phi)$

More on atoms

- Let A be a complete atomistic inverse algebra, with its set of primitive idempotents (atoms of $E(A)$) denoted by $P=P(A)$. Write $P^{0}=P \cup\{0\}$.
- Let $\phi: S \rightarrow A$ be a homomorphism.
- Then S acts on P^{0} by conjugation: $\gamma_{s}: p \mapsto(s \phi)^{-1} p(s \phi)$
- Example: if A is \mathscr{I}_{X}, P consists of the singletons of the diagonal, $\{(x, x)\}$. And the action is as usual, $(x, x) \mapsto(x s, x s)$.

More on atoms

- Let A be a complete atomistic inverse algebra, with its set of primitive idempotents (atoms of $E(A)$) denoted by $P=P(A)$. Write $P^{0}=P \cup\{0\}$.
- Let $\phi: S \rightarrow A$ be a homomorphism.
- Then S acts on P^{0} by conjugation: $\gamma_{s}: p \mapsto(s \phi)^{-1} p(s \phi)$
- Example: if A is \mathscr{I}_{X}, P consists of the singletons of the diagonal, $\{(x, x)\}$. And the action is as usual, $(x, x) \mapsto(x s, x s)$.
- Messier in \mathscr{I}_{X}^{*}

Studying representations

A simplification: To avoid writing $\phi: S^{\prime} \rightarrow A$ we consider how $S^{\prime} \phi=S$ sits in A. (The congruences on S are well-described.)

The orbital (partial) equivalence

- Define a relation $\mathscr{T}=\mathscr{T}_{S}$ on the set P as follows: for $p, q \in P$,

The orbital (partial) equivalence

- Define a relation $\mathscr{T}=\mathscr{T}_{S}$ on the set P as follows: for $p, q \in P$,
- $p \mathscr{T}_{s} q$ if there exists $s \in S$ such that $q=s^{-1} p s$

The orbital (partial) equivalence

- Define a relation $\mathscr{T}=\mathscr{T}_{S}$ on the set P as follows: for $p, q \in P$,
- $p \mathscr{T}_{s} q$ if there exists $s \in S$ such that $q=s^{-1} p s$
- $\mathscr{T}=\mathscr{T}_{S}$ is an equivalence on its domain $\subset P$

More on atoms

A side-trip, useful technically: The Following Are Equivalent:

- $q=s^{-1} p s ;$

More on atoms

A side-trip, useful technically: The Following Are Equivalent:

- $p s=s q \neq 0$;

More on atoms

A side-trip, useful technically: The Following Are Equivalent:

- $p s q=p s=s q \neq 0 ;$

More on atoms

A side-trip, useful technically: The Following Are Equivalent:

- $p s q \neq 0$.

More on atoms

A side-trip, useful technically: The Following Are Equivalent:

- $q=s^{-1} p s ;$
- $p s=s q \neq 0$;
- $p s q=p s=s q \neq 0$;
- $p s q \neq 0$.

Classifying representations / subsemigroups

Recall the 'classical' case:

- Any effective S in \mathscr{I}_{X}

Classifying representations / subsemigroups

Recall the 'classical' case:

- Any effective S in \mathscr{I}_{X}
- i.e., $\operatorname{dom}(\mathscr{T})=P=\{(x, x)\}$

Classifying representations / subsemigroups

Recall the 'classical' case:

- Any effective S in \mathscr{I}_{X}
- decomposes to a 'sum' of transitive ones

Classifying representations / subsemigroups

Recall the 'classical' case:

- Any effective S in \mathscr{I}_{X}
- decomposes to a 'sum' of transitive ones
- (\mathscr{T} is universal on P)

Classifying representations / subsemigroups

Recall the 'classical' case:

- Any effective S in \mathscr{I}_{X}
- decomposes to a 'sum' of transitive ones
- each of which uses one orbit

Classifying representations / subsemigroups

Recall the 'classical' case:

- every transitive one has an 'internal' description in S

Effective; transitive

- effectiveness:

Effective; transitive

- effectiveness:
- the subsemigroup S of A is (strongly) effective if there is no $p \in P$ such that $p s=0$ for all $s \in S$. (Too strong?)

Effective; transitive

- effectiveness:
- the subsemigroup S of A is (strongly) effective if there is no $p \in P$ such that $p s=0$ for all $s \in S$. (Too strong?)
- the practical idea is that no "smaller" \mathscr{I}_{X} can be used,

Effective; transitive

- effectiveness:
- the subsemigroup S of A is (strongly) effective if there is no $p \in P$ such that $p s=0$ for all $s \in S$. (Too strong?)
- the practical idea is that no "smaller" \mathscr{I}_{X} can be used,
- So say that $S \leq A$ is weakly effective if the only local algebra containing S is A itself: $S \leq e A e$ implies $e=1$. $(s=s e=e s$ for all $s \in S \Rightarrow e=1_{A}$.)

Effective; transitive

Transitivity

- Classically: $S \leq \mathscr{I}_{X}$ is transitive if, given any $x, y \in X$, there is $s \in S$ with $(x, y) \in s .((x, x) \mapsto(y, y))$

Effective; transitive

Transitivity

- Classically: $S \leq \mathscr{I}_{X}$ is transitive if, given any $x, y \in X$, there is $s \in S$ with $(x, y) \in s .((x, x) \mapsto(y, y))$
- abstract version: S is strongly transitive in A if there is only one orbit of the action, i.e., each atom of A is underneath some element of S

Effective; transitive

Transitivity

- Classically: $S \leq \mathscr{I}_{X}$ is transitive if, given any $x, y \in X$, there is $s \in S$ with $(x, y) \in s .((x, x) \mapsto(y, y))$
- abstract version: S is strongly transitive in A if there is only one orbit of the action, i.e., each atom of A is underneath some element of S
- implications for the structure of A :
\ldots. all atoms of A form one \mathscr{D}-class. Too strong?

Effective; transitive

Transitivity

- Classically: $S \leq \mathscr{I}_{X}$ is transitive if, given any $x, y \in X$, there is $s \in S$ with $(x, y) \in s .((x, x) \mapsto(y, y))$
- abstract version: S is strongly transitive in A if there is only one orbit of the action, i.e., each atom of A is underneath some element of S
- S is weakly transitive if \mathscr{T}_{S} has just one class (AND not necessarily all of P). That is, for each pair $p, q \in P$ such that $p S \neq\{0\}$ and $q S \neq\{0\}, \quad p=s^{-1} q s$ for some $s \in S$.

Effective; transitive

- Classically, S is transitive [effective] if \mathscr{T}_{S} is universal [has total projections].

Effective; transitive

- Classically, S is transitive [effective] if \mathscr{T}_{S} is universal [has total projections].
- Non-classically, If the S is transitive and weakly effective, then it is effective; if it is effective and weakly transitive, then it is transitive.

Effective; transitive

- Classically, S is transitive [effective] if \mathscr{T}_{S} is universal [has total projections].
- Non-classically, If the S is transitive and weakly effective, then it is effective; if it is effective and weakly transitive, then it is transitive.
- So 'weakly effective and transitive' means both are weak-sense

Effective; transitive

- Classically, S is transitive [effective] if \mathscr{T}_{S} is universal [has total projections].
- Non-classically, If the S is transitive and weakly effective, then it is effective; if it is effective and weakly transitive, then it is transitive.
- So 'weakly effective and transitive' means both are weak-sense
- We also have to give something away in the component maps: say that ϕ is a lax homomorphism if $(s t) \phi \leq(s \phi)(t \phi)$

Theorems

- Any (effective) representation of an inverse semigroup S in a complete atomistic inverse algebra A is equivalent to a product of weakly transitive effective lax representations of S.

Theorems

- Any effective representation of an inverse semigroup S in a complete atomistic distributive inverse algebra A is equivalent to a sum of transitive effective representations of S.

Theorems

- Any effective representation of an inverse semigroup S in a complete atomic Boolean inverse algebra A is equivalent to an orthogonal sum of transitive effective representations of S.

Theorems

- Any effective representation of an inverse semigroup S in a matroid inverse algebra A is equivalent to a product of transitive and effective representations of S.

Theorems need definitions!

- A lattice L is called semimodular if whenever a, b cover z there exists $x \in L$ which covers a and b.

Theorems need definitions!

- A lattice L is called semimodular if whenever a, b cover z there exists $x \in L$ which covers a and b.
- A lattice L is called a matroid lattice if it is complete, atomistic and semimodular. (There are some equivalent formulations...)

Theorems need definitions!

- A lattice L is called semimodular if whenever a, b cover z there exists $x \in L$ which covers a and b.
- A lattice L is called a matroid lattice if it is complete, atomistic and semimodular. (There are some equivalent formulations...)
- A lattice L is meet-continuous if for any \uparrow-directed $X \subseteq L$ and $a \in L, a \wedge(\bigvee X)=\bigvee(a \wedge X)=\bigvee\{a \wedge x: x \in X\}$.

Theorems need definitions!

- A lattice L is called semimodular if whenever a, b cover z there exists $x \in L$ which covers a and b.
- A lattice L is called a matroid lattice if it is complete, atomistic and semimodular. (There are some equivalent formulations...)
- A lattice L is meet-continuous if for any \uparrow-directed $X \subseteq L$ and $a \in L, a \wedge(\bigvee X)=\bigvee(a \wedge X)=\bigvee\{a \wedge x: x \in X\}$.
- If L is a matroid lattice, then it is meet-continuous.

Key methods

- Let the blocks of \mathscr{T}_{S} be $\left\{P_{i}: i \in I\right\}$ for some index set I.

Key methods

- Define (for $i \in I$)

$$
e_{i}=\bigvee\left\{p: p \in P_{i}\right\}=\bigvee P_{i}
$$

and

Key methods

- Define (for $i \in I$)

$$
e_{i}=\bigvee\left\{p: p \in P_{i}\right\}=\bigvee P_{i}
$$

and

- the local algebra $A_{i}=e_{i} A e_{i}$.

Key methods

- Define (for $i \in I$)

$$
e_{i}=\bigvee\left\{p: p \in P_{i}\right\}=\bigvee P_{i}
$$

and

- the local algebra $A_{i}=e_{i} A e_{i}$.
- Also define the mapping $\phi_{i}: S \rightarrow A_{i}$ by

$$
s \phi_{i}=\bigvee\left\{p s: p \in P_{i}\right\}
$$

Key methods

- Define (for $i \in I$)

$$
e_{i}=\bigvee\left\{p: p \in P_{i}\right\}=\bigvee P_{i}
$$

and

- the local algebra $A_{i}=e_{i} A e_{i}$.
- Also define the mapping $\phi_{i}: S \rightarrow A_{i}$ by

$$
s \phi_{i}=\bigvee\left\{p s: p \in P_{i}\right\}
$$

- $s \mapsto\left(s \phi_{i}\right)$

Key methods

- Define (for $i \in I$)

$$
e_{i}=\bigvee\left\{p: p \in P_{i}\right\}=\bigvee P_{i}
$$

and

- the local algebra $A_{i}=e_{i} A e_{i}$.
- Also define the mapping $\phi_{i}: S \rightarrow A_{i}$ by

$$
s \phi_{i}=\bigvee\left\{p s: p \in P_{i}\right\}
$$

- $s \mapsto\left(s \phi_{i}\right)$
- $s=\bigvee\left\{s \phi_{i}\right\}$

