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The word problem for monoids and groups

Definition

A monoid M with a finite generating set A has decidable word problem if
there is an algorithm which for any two words wi, w, € A* decides whether
or not they represent the same element of M.

Example. M = (a,b | ab = ba) has decidable word problem.

Some history
» Markov (1947) and Post (1947): first examples of finitely presented
monoids with undecidable word problem;

» Turing (1950): finitely presented cancellative semigroup with
undecidable word problem;

» Novikov (1955) and Boone (1958): finitely presented group with
undecidable word problem.



Complete rewriting systems

A - alphabet, R C A* x A* -rewriterules, (A | R) - rewriting system
Write r = (V_H,r_[) €Rasry —r_y.

Define a binary relation — on A* by

u— v & u=wirpwrand v = wir_ws

for some (ry1,7—1) € Rand wy,w, € A*.

—*5, is the transitive and reflexive closure of —,

Noetherian: No infinite descending Confluent: Whenever
chain u—*s vandu -5 v/

Wi = Wo = =% Wi %, there is a word w € A*:

v wandv 5w

Definition: (A | R) is a finite complete rewriting system if it is complete
(noetherian and confluent) and |A| < co and |R| < oo.



Complete rewriting systems

Example (Free commutative monoid)
(a,b | ba — ab)

Normal forms (irreducibles) = {a'b/ : i,j > 0}

Example (Free group)
(a,a= ' b,b~ " |aa™' = 1, ata— 1, bb~' — 1, b=1b — 1).

Normal forms (irreducibles) = { freely reduced words }.

Important basic fact

If a monoid M admits a presentation by a finite complete rewriting system,
then M has decidable word problem.



The homological finiteness property FP,
ZM - integral monoid ring, e.g. 4m; — 2my + 3m3 € ZM

Definition
A monoid is of type left-FP,, if Z has a free resolution as a trivial left
ZM-module that is finite through dimension #. i.e. there is a sequence:

O, O ) 8 o
Fp 25 Fp | — . 2 F 5 F 2720

such that for all i we have:
» F;is a finitely generated free left ZM-module i.e.

FF2IMeIM & --- & ZM

» 0, is a homomorphism, and the sequence is exact, i.e.
> im(9;) = ker(9,—) and im(8y) = Z.



The homological finiteness property FP,
ZM - integral monoid ring, e.g. 4m; — 2my + 3m3 € ZM
Definition

A monoid is of type left-FP,, if Z has a free resolution as a trivial left
ZM-module that is finite through dimension #. i.e. there is a sequence:
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such that for all i we have:
» F;is a finitely generated free left ZM-module i.e.

FFE2IMOIM® --- D IM
» 0, is a homomorphism, and the sequence is exact, i.e.
> im(9;) = ker(9,—) and im(8y) = Z.

For any monoid:
» finitely generated = left-FP;, finitely presented = left-FP,

» Anick (1986): If a monoid M is presented by a finite complete
rewriting system then M is of type left-FP .



One-relation monoids

Longstanding open problem

Is the word problem decidable for one-relation monoids (A | u = v)?

Related open problem

Does every one-relation monoid (A | u = v) admit a presentation by a finite
complete rewriting system?

If yes then every one-relation monoid would be of type left-FP, so we ask:

Question: Is every one-relator monoid (A | u = v) of type left-FP,?

Magnus (1932): Proved that one-relator groups have decidable word
problem.

Cohen—Lyndon (1963): Shows that every one-relator group is of type FP..



The topological finiteness property F,

Definition (C. T. C. Wall (1965))

A K(G, 1)-complex is a CW complex with fundamental group G and all
other homotopy groups trivial (i.e. the space is aspherical). A group G is of
type F, (0 < n < o0) if there is a K(G, 1)-complex with finite n-skeleton

For any group:

(1) F; = finitely generated, F, = finite presented.
(i) F, = FP,
(iii) For finitely presented groups F,, = FP,,.

Aim

Develop a theory of topological finiteness properties of monoids. A good
definition of F,, for monoids should satisfy (ii), so that it can be used to study
FP,.



Cell complexes

...spaces that can be decomposed nicely into a disjoint union of cells

» [ =10,1] C R - unit interval
» S" - unit sphere in R"*!

= all points at distance 1 from the origin. A‘
» B" - closed unit ball in R" = all points of

distance < 1 from the origin. °
» OB" = §"~! = the boundary of the # ball.
» ¢" - an n-cell, homeomorphic to the open

n ball B" — OB".
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Attaching an n-cell
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CW complex definition

Definition
A CW decomposition of a topological space X is a sequence of subspaces

XX X ...

such that
> X) is discrete set, whose points are regarded as O cells

» The n-skeleton X, is obtained from X,,_; by attaching a (possibly)
infinite number of n-cells e, via maps ¢, : "' — X,_1.

» We have X = UX,, with the weak topology (this means that a set U C X
is open if and only if U N X, is open in X,, for each n).

A CW complex? is a space X equipped with a CW decomposition.

2C stands for ‘closure-finite’, and the W for ‘weak topology’.



K(G, 1) of a group and property F,

Definition
A K(G, 1)-complex is a CW complex with fundamental group G and all
other homotopy groups trivial (i.e. the space is aspherical).

Existence: Every group G admits a K(G, 1)-complex Y.

Uniqueness: If X and Y are CW complexes both of which are
K(G, 1)-complexes then X and Y are homotopy equivalent (Hurewicz,
1936).



The classifying space |BM |

Associated with any monoid M is a combinatorial object BM called a
simplicial set.

BM has n-simplices: o = (my, my, ..., m,) - n-tuples of elements of M.
There are face maps given by

(may ... my) i=0
dioc = (my,...,mi_y,mmi,miya,...,m,) 0<i<n
(my,...,my_1) i=n,

and degeneracy maps are given by
sio = (my,...,my, 1L,migr,...,my) (0<i<n).

The geometric realisation |[BM| is a CW complex build from the above data
which has one n-cell for every non-degenerate n-simplex of BM i.e. for
every n-tuple all of whose entries are different from 1.



First attempt: F,, for monoids via |BM |
Fact: If G is a group then |BG]| is a K(G, 1)-complex.
Since K(G, 1) is unique up to homotopy equivalence we have:

Gisoftype F, < |BG]|is homotopy equivalent to a CW-complex
with finite n-skeleton.
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First attempt: F,, for monoids via |BM |
Fact: If G is a group then |BG]| is a K(G, 1)-complex.
Since K(G, 1) is unique up to homotopy equivalence we have:

Gisoftype F, < |BG]|is homotopy equivalent to a CW-complex
with finite n-skeleton.

Definition (first attempt)

Misof type F, < |BM]| is homotopy equivalent to a CW-complex
with finite n-skeleton.

McDuff (1979) showed that if M has a left or right zero then |BM| is
contractible (i.e. is homotopy equivalent to a one-point space). On the other
hand, it is known that an infinite left zero semigroup with identity adjoined
does not satisfy the property left-FP;.

Conclusion
If we define F,, for monoids via |[BM| then F,, % left-FP,,.



M-equivariant classifying space |EM |

Associated with any monoid M is another simplicial set EM.

The n-simplies of EM are written as m(my, my, ...,m,) = mt where
7 = (my, my, ...,my,) is an n-simplex of BM.

The face maps in E—A>/I are given by

mml(m27'°';mn) l:0
di(m(mlam27 »mn)) = m(ml,mg, ce, MMy, ...,mn) O<i<n
m(m17m27~--7mn—l) i=n

and the degeneracy maps are given by
sio=m(my,...,my, Lmiy,...,my) (0<i<n).
where o = m(my, ..., my).

The geometric realisation |[EM| is a CW complex with one n-cell for every
non-degenerate n-simplex of EM.



M-equivariant classifying space |EM |

M acts on EM via left multiplication.
n-m(my,my, ...,my,) = nm(my, my, ..., my).
EM is a free left M—s&wuh basis BM
i.e. each element of EM can be written uniquely in the form mr for 7 in BM.

This action sends (non-degenerate) n-simplices to (non-degenerate)
n-simplices, and thus induces an action of M on |[EM]|.

Conclusion R
The monoid M acts by left multiplication on the CW complex |EM|. This
action is free, and sends n-cells to n-cells.



Free M-CW complex

A left M-space is a topological space X with a continuous left action
M x X — X where M has the discrete topology.

Definition (free M-CW-complex)

A free M-cell of dimension 7 is an M-space of the form M x B" where B"
has the trivial action.

A free M-CW complex is built up by attaching M-cells M x B" via
M-equivariant maps from M x $"~! to the (n — 1)-skeleton.

X, is obtained from X,,_; as a Pox Sl X,
pushout of M-spaces, with ! !
M-equivariant maps, where P, \[ \[
is a free left M-set. P, x B" X,



Attaching an orbit of cells
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Equivariant classifying spaces

Definition
We say that a free M-CW complex X is a left equivariant classifying space
for M if it is contractible.

Existence: Every monoid has a left equivariant classifying space. Indeed, it
may be shown that |[EM| is an example.

Uniqueness: Let X, Y be equivariant classifying spaces for M. Then X and Y
are M-homotopy equivalent.

Definition (Property F, for monoids)

A monoid M is of type left-F), if there is an equivariant classifying space X
for M such that the set of k-cells is a finitely generated free left M-set for all
k<n.



Relationship with FP,

Proposition (RDG & Steinberg)
Let M be a monoid.

1. A group is of type left-F,, if and only if it is of type F), in the usual
sense.

2. If M is of type left-F,, then® it is of type left-FP,,.
3. For finitely presented monoids left-F,, = left-FP,,.

3The augmented cellular chain complex of an equivariant classifying space for M provides a
free resolution of the trivial (left) ZM-module Z.



Finite generation and presentability

Let M be a monoid and let A C M. The (right) Cayley graph I'(M,A) has
Vertices: M Directed edges: x — y iff y = xa where x,y € M, a € A.

Theorem (RDG & Steinberg)

Let M be a monoid. The following are equivalent.
1. M is of type left-F.
2. M is of type left-FP;.

3. There is a finite subset A C M such that I'(M, A) is connected as an
undirected graph.

In particular, any finitely generated monoid is of type left-F.

Theorem (RDG & Steinberg)
Let M be a finitely presented monoid. Then M is of type left-F,.



Cayley graphs of semigroups and monoids

N S— P— N ~ s
A A 9 LA g L g N 5
c\_/cbwcb Vcb \\_/cb Vcb
c? - b 2b? v 2b? Ay
a3 - b Ab? A bt Ay
b *b c*b? oy b Ay
~—— ~— ~— ~— ~—
Il b Ab? v bt oy
~—— ~— ~ ~— ~

The bicyclic monoid B = (b,c | bc = 1)



Free monoids are left-F,
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One-relation monoids

Question: Is every one-relation monoid (A | u = v) of type FP.?

Theorem (RDG & Steinberg)

LetM = (A|w, = 1,w, =1,...,wx = 1) and let G be the group of units of
M. If G is left-F . then M is left-F .

Corollary (RDG & Steinberg)
Every one-relator monoid M = (A | w = 1) is of type left-F...

Note: It is still an open whether one-relation monoids (A | u = v) in general
are left-F ..






Free products with amalgamation

A monoid amalgam is a triple [M, M,; W] where M|, M, are monoids with a
common submonoid W. The amalgamated free product is the pushout

W— M,

Lo

M2 — M1 *WMZ

Theorem (RDG & Steinberg)

Let [M;, M,; W] be an amalgam of monoids such that M;, M, are free as
right W-sets. If M|, M, are of type left-F,, and W is of type left-F,,_;, then
M xyw M, is of type left-F),.

Notes:

» The hypotheses this theorem hold if W is trivial or if M, M, are left
cancellative and W is a group.

» Improves on results of Cremanns and Otto (1998).



HNN-like extensions after Otto and Pride

M - monoids, A - submonoid, : A — M a homomorphism
Then the corresponding Otto-Pride extension is the monoid

L= (M,t|at=tp(a),a € A)

Theorem (RDG & Steinberg)

Let M be a monoid, A a submonoid and ¢: A — M be a homomorphism.
Let L be the Otto-Pride extension. Suppose that M is free as a right A-set. If
M is of type left-F,, and A is of type left-F,_, then L is of type left-F),.
Notes:

» Is a higher dimensional topological analogue of some results of Otto
and Pride (2004).

» Can be used to recover some of their results on homological finiteness
properties.



HNN extensions in the sense of Howie (1963)

M - monoids, A, B - submonoids isomorphic via ¢: A — B
C = infinite cyclic group generated by ¢

The HNN extension of M with base monoids A, B is defined to be

L= Mttt =1=1""tat =tp(a),Va € A)

Theorem (RDG & Steinberg)

Let L be an HNN extension of M with base monoids A, B. Suppose that,
furthermore, M is free as both a right A-set and a right B-set. If M is of type
left-F,, and A is of type left-F,,_;, then L is of type left-F,.

Notes:

» This result recovers the usual topological finiteness result for HNN
extensions of groups.

» It also applies if M is left cancellative and A is a group.



Brown’s theory of collapsing schemes

In his 1989 paper “The geometry of rewriting systems: a proof of the
Anick—Groves—Squier Theorem”, Brown shows:

If a monoid M admits a presentation by a finite complete rewriting system
then |BM| has the homotopy type of a CW-complex with only finitely many
cells in each dimension.

» To prove this he introduces the notion of a collapsing scheme.

» This idea has its roots in earlier work of Brown and Geoghegan
(1984).

» Collapsing schemes were rediscovered again later on as Morse
matchings in Forman’s Discrete Morse theory.



Brown’s theory of collapsing schemes

Brown'’s result provides a topological proof that if G is presentable by a
finite complete rewriting system then G is of type F.

In his paper he goes on to say:

“We would like, more generally, to construct a “small” resolution
of this type for any monoid M with a good set of normal forms, not
Jjust for groups. I do not know any way to formally deduce such a
resolution from the existence of the homotopy equivalence for
|BM| above”.



Topological proof of Anick’s Theorem

We have developed a theory of M-equivariant collapsing schemes which can
be used to give a topological proof of

Theorem (RDG & Steinberg)

Let M be a monoid. If M admits a presentation by a finite complete rewriting
system then M is of type left-F.

Notes:
» We recover Anick’s theorem for monoids as a corollary.

» Our results also apply in the 2-sided case and thus we also recover a
theorem of Kobayashi (2005) on bi-FP, as a corollary.



Other topics

Other topological finiteness properties

» The left geometric dimension of M to be the minimum dimension of an
equivariant classifying space for M.

» geometric dimension is an upper bound on the cohomological
dimension cd M of M.

Projective M-sets

» We actually develop the entire theory in the more general setting of
projective M CW-complexes.

Two-sided theory

» We define the bilateral notion of a classifying space in order to
introduce a stronger property, bi-F,,. The property bi-F,, implies bi-FP,
which is of interest from the point of view of Hochschild cohomology.



