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The word problem for monoids and groups

Definition
A monoid M with a finite generating set A has decidable word problem if
there is an algorithm which for any two words w1,w2 ∈ A∗ decides whether
or not they represent the same element of M.

Example. M ∼= 〈a, b | ab = ba〉 has decidable word problem.

Some history

I Markov (1947) and Post (1947): first examples of finitely presented
monoids with undecidable word problem;

I Turing (1950): finitely presented cancellative semigroup with
undecidable word problem;

I Novikov (1955) and Boone (1958): finitely presented group with
undecidable word problem.



Complete rewriting systems

A - alphabet, R ⊆ A∗ × A∗ - rewrite rules, 〈A | R〉 - rewriting system
Write r = (r+1, r−1) ∈ R as r+1 → r−1.

Define a binary relation→
R

on A∗ by

u→
R

v ⇔ u ≡ w1r+1w2 and v ≡ w1r−1w2

for some (r+1, r−1) ∈ R and w1,w2 ∈ A∗.

−→∗ R is the transitive and reflexive closure of→
R

Noetherian: No infinite descending
chain

w1→R
w2→R

· · ·→
R

wn→R
· · ·

Confluent: Whenever

u−→∗ R v and u−→∗ R v′

there is a word w ∈ A∗:

v−→∗ R w and v′−→∗ R w

Definition: 〈A | R〉 is a finite complete rewriting system if it is complete
(noetherian and confluent) and |A| <∞ and |R| <∞.



Complete rewriting systems

Example (Free commutative monoid)

〈a, b | ba→ ab〉

Normal forms (irreducibles) = {aibj : i, j ≥ 0}

Example (Free group)

〈a, a−1, b, b−1 | aa−1 → 1, a−1a→ 1, bb−1 → 1, b−1b→ 1〉.

Normal forms (irreducibles) = { freely reduced words }.

Important basic fact
If a monoid M admits a presentation by a finite complete rewriting system,
then M has decidable word problem.



The homological finiteness property FPn
ZM - integral monoid ring, e.g. 4m1 − 2m2 + 3m3 ∈ ZM

Definition
A monoid is of type left-FPn if Z has a free resolution as a trivial left
ZM-module that is finite through dimension n. i.e. there is a sequence:

Fn
∂n−→ Fn−1

∂n−1−−−→ · · · ∂2−→ F1
∂1−→ F0

∂0−→ Z→ 0

such that for all i we have:
I Fi is a finitely generated free left ZM-module i.e.

Fi ∼= ZM ⊕ ZM ⊕ · · · ⊕ ZM

I ∂i is a homomorphism, and the sequence is exact, i.e.
I im(∂i) = ker(∂i−1) and im(∂0) = Z.

For any monoid:
I finitely generated⇒ left-FP1, finitely presented⇒ left-FP2

I Anick (1986): If a monoid M is presented by a finite complete
rewriting system then M is of type left-FP∞.
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One-relation monoids

Longstanding open problem
Is the word problem decidable for one-relation monoids 〈A | u = v〉?

Related open problem
Does every one-relation monoid 〈A | u = v〉 admit a presentation by a finite
complete rewriting system?

If yes then every one-relation monoid would be of type left-FP∞ so we ask:

Question: Is every one-relator monoid 〈A | u = v〉 of type left-FP∞?

Magnus (1932): Proved that one-relator groups have decidable word
problem.
Cohen–Lyndon (1963): Shows that every one-relator group is of type FP∞.



The topological finiteness property Fn

Definition (C. T. C. Wall (1965))
A K(G, 1)-complex is a CW complex with fundamental group G and all
other homotopy groups trivial (i.e. the space is aspherical). A group G is of
type Fn (0 ≤ n <∞) if there is a K(G, 1)-complex with finite n-skeleton

For any group:
(i) F1 ≡ finitely generated, F2 ≡ finite presented.

(ii) Fn ⇒ FPn

(iii) For finitely presented groups Fn ≡ FPn.

Aim
Develop a theory of topological finiteness properties of monoids. A good
definition of Fn for monoids should satisfy (ii), so that it can be used to study
FPn.



Cell complexes
...spaces that can be decomposed nicely into a disjoint union of cells

I I = [0, 1] ⊆ R - unit interval
I Sn - unit sphere in Rn+1

= all points at distance 1 from the origin.
I Bn - closed unit ball in Rn = all points of

distance ≤ 1 from the origin.
I ∂Bn = Sn−1 = the boundary of the n ball.
I en - an n-cell, homeomorphic to the open

n ball Bn − ∂Bn.





Attaching an n-cell



CW complex definition

Definition
A CW decomposition of a topological space X is a sequence of subspaces

X0 ⊆ X1 ⊆ X2 ⊆ . . .

such that
I X0 is discrete set, whose points are regarded as 0 cells
I The n-skeleton Xn is obtained from Xn−1 by attaching a (possibly)

infinite number of n-cells en
α via maps ϕα : Sn−1 → Xn−1.

I We have X = ∪Xn with the weak topology (this means that a set U ⊆ X
is open if and only if U ∩ Xn is open in Xn for each n).

A CW complex2 is a space X equipped with a CW decomposition.

2C stands for ‘closure-finite’, and the W for ‘weak topology’.



K(G, 1) of a group and property Fn

Definition
A K(G, 1)-complex is a CW complex with fundamental group G and all
other homotopy groups trivial (i.e. the space is aspherical).

Existence: Every group G admits a K(G, 1)-complex Y .

Uniqueness: If X and Y are CW complexes both of which are
K(G, 1)-complexes then X and Y are homotopy equivalent (Hurewicz,
1936).



The classifying space |BM|

Associated with any monoid M is a combinatorial object BM called a
simplicial set.

BM has n-simplices: σ = (m1,m2, ...,mn) - n-tuples of elements of M.
There are face maps given by

diσ =


(m2, . . . ,mn) i = 0
(m1, . . . ,mi−1,mimi+1,mi+2, . . . ,mn) 0 < i < n
(m1, . . . ,mn−1) i = n,

and degeneracy maps are given by

siσ = (m1, . . . ,mi, 1,mi+1, . . . ,mn) (0 ≤ i ≤ n).

The geometric realisation |BM| is a CW complex build from the above data
which has one n-cell for every non-degenerate n-simplex of BM i.e. for
every n-tuple all of whose entries are different from 1.



First attempt: Fn for monoids via |BM|
Fact: If G is a group then |BG| is a K(G, 1)-complex.

Since K(G, 1) is unique up to homotopy equivalence we have:

G is of type Fn ⇔ |BG| is homotopy equivalent to a CW-complex
with finite n-skeleton.

Definition (first attempt)

M is of type Fn ⇔ |BM| is homotopy equivalent to a CW-complex
with finite n-skeleton.

McDuff (1979) showed that if M has a left or right zero then |BM| is
contractible (i.e. is homotopy equivalent to a one-point space). On the other
hand, it is known that an infinite left zero semigroup with identity adjoined
does not satisfy the property left-FP1.

Conclusion
If we define Fn for monoids via |BM| then Fn 6⇒ left-FPn.



First attempt: Fn for monoids via |BM|
Fact: If G is a group then |BG| is a K(G, 1)-complex.

Since K(G, 1) is unique up to homotopy equivalence we have:

G is of type Fn ⇔ |BG| is homotopy equivalent to a CW-complex
with finite n-skeleton.

Definition (first attempt)

M is of type Fn ⇔ |BM| is homotopy equivalent to a CW-complex
with finite n-skeleton.

McDuff (1979) showed that if M has a left or right zero then |BM| is
contractible (i.e. is homotopy equivalent to a one-point space). On the other
hand, it is known that an infinite left zero semigroup with identity adjoined
does not satisfy the property left-FP1.

Conclusion
If we define Fn for monoids via |BM| then Fn 6⇒ left-FPn.



First attempt: Fn for monoids via |BM|
Fact: If G is a group then |BG| is a K(G, 1)-complex.

Since K(G, 1) is unique up to homotopy equivalence we have:

G is of type Fn ⇔ |BG| is homotopy equivalent to a CW-complex
with finite n-skeleton.

Definition (first attempt)

M is of type Fn ⇔ |BM| is homotopy equivalent to a CW-complex
with finite n-skeleton.

McDuff (1979) showed that if M has a left or right zero then |BM| is
contractible (i.e. is homotopy equivalent to a one-point space). On the other
hand, it is known that an infinite left zero semigroup with identity adjoined
does not satisfy the property left-FP1.

Conclusion
If we define Fn for monoids via |BM| then Fn 6⇒ left-FPn.



M-equivariant classifying space |−→EM|
Associated with any monoid M is another simplicial set

−→
EM.

The n-simplies of
−→
EM are written as m(m1,m2, ...,mn) = mτ where

τ = (m1,m2, ...,mn) is an n-simplex of BM.

The face maps in
−→
EM are given by

di(m(m1,m2, ...,mn)) =


mm1(m2, ...,mn) i = 0
m(m1,m2, ...,mimi+1, ...,mn) 0 < i < n
m(m1,m2, ...,mn−1) i = n

and the degeneracy maps are given by

siσ = m(m1, . . . ,mi, 1,mi+1, . . . ,mn) (0 ≤ i ≤ n).

where σ = m(m1, ...,mn).

The geometric realisation |−→EM| is a CW complex with one n-cell for every
non-degenerate n-simplex of

−→
EM.



M-equivariant classifying space |−→EM|

M acts on
−→
EM via left multiplication.

n · m(m1,m2, ...,mn) = nm(m1,m2, ...,mn).

−→
EM is a free left M-set with basis BM
i.e. each element of

−→
EM can be written uniquely in the form mτ for τ in BM.

This action sends (non-degenerate) n-simplices to (non-degenerate)
n-simplices, and thus induces an action of M on |−→EM|.

Conclusion
The monoid M acts by left multiplication on the CW complex |−→EM|. This
action is free, and sends n-cells to n-cells.



Free M-CW complex

A left M-space is a topological space X with a continuous left action
M × X → X where M has the discrete topology.

Definition (free M-CW-complex)
A free M-cell of dimension n is an M-space of the form M × Bn where Bn

has the trivial action.

A free M-CW complex is built up by attaching M-cells M × Bn via
M-equivariant maps from M × Sn−1 to the (n− 1)-skeleton.

Xn is obtained from Xn−1 as a
pushout of M-spaces, with
M-equivariant maps, where Pn

is a free left M-set.

Pn × Sn−1 Xn−1

Pn × Bn Xn



Attaching an orbit of cells



Equivariant classifying spaces

Definition
We say that a free M-CW complex X is a left equivariant classifying space
for M if it is contractible.

Existence: Every monoid has a left equivariant classifying space. Indeed, it
may be shown that |−→EM| is an example.

Uniqueness: Let X,Y be equivariant classifying spaces for M. Then X and Y
are M-homotopy equivalent.

Definition (Property Fn for monoids)
A monoid M is of type left-Fn if there is an equivariant classifying space X
for M such that the set of k-cells is a finitely generated free left M-set for all
k ≤ n.



Relationship with FPn

Proposition (RDG & Steinberg)
Let M be a monoid.

1. A group is of type left-Fn if and only if it is of type Fn in the usual
sense.

2. If M is of type left-Fn, then3 it is of type left-FPn.
3. For finitely presented monoids left-Fn ≡ left-FPn.

3The augmented cellular chain complex of an equivariant classifying space for M provides a
free resolution of the trivial (left) ZM-module Z.



Finite generation and presentability

Let M be a monoid and let A ⊆ M. The (right) Cayley graph Γ(M,A) has
Vertices: M Directed edges: x a−→ y iff y = xa where x, y ∈ M, a ∈ A.

Theorem (RDG & Steinberg)
Let M be a monoid. The following are equivalent.

1. M is of type left-F1.
2. M is of type left-FP1.
3. There is a finite subset A ⊆ M such that Γ(M,A) is connected as an

undirected graph.
In particular, any finitely generated monoid is of type left-F1.

Theorem (RDG & Steinberg)
Let M be a finitely presented monoid. Then M is of type left-F2.



Cayley graphs of semigroups and monoids
1

��

((
hh b ))

ii b2 **
ii b3 **

ii b4 **
ii b5

c

��

))
hh cb

**
ii cb2 **

jj cb3 **
jj cb4 **

jj cb5

c2

��

**
ii c2b

++
jj c2b2 ++

kk c2b3 ++
kk c2b4 ++

kk c2b5

c3

��

**
ii c3b

++
jj c3b2 ++

kk c3b3 ++
kk c3b4 ++

kk c3b5

c4

��

**
ii c4b

++
jj c4b2 ++

kk c4b3 ++
kk c4b4 ++

kk c4b5

c5 **
ii c5b

++
jj c5b2 ++

kk c5b3 ++
kk c5b4 ++

kk c5b5

The bicyclic monoid B = 〈b, c | bc = 1〉



Free monoids are left-F∞







One-relation monoids

Question: Is every one-relation monoid 〈A | u = v〉 of type FP∞?

Theorem (RDG & Steinberg)
Let M = 〈A | w1 = 1,w2 = 1, . . . ,wk = 1〉 and let G be the group of units of
M. If G is left-F∞ then M is left-F∞.

Corollary (RDG & Steinberg)
Every one-relator monoid M = 〈A | w = 1〉 is of type left-F∞.

Note: It is still an open whether one-relation monoids 〈A | u = v〉 in general
are left-F∞.





Free products with amalgamation

A monoid amalgam is a triple [M1,M2; W] where M1,M2 are monoids with a
common submonoid W. The amalgamated free product is the pushout

W M1

M2 M1 ∗W M2

Theorem (RDG & Steinberg)
Let [M1,M2; W] be an amalgam of monoids such that M1,M2 are free as
right W-sets. If M1,M2 are of type left-Fn and W is of type left-Fn−1, then
M1 ∗W M2 is of type left-Fn.
Notes:

I The hypotheses this theorem hold if W is trivial or if M1,M2 are left
cancellative and W is a group.

I Improves on results of Cremanns and Otto (1998).



HNN-like extensions after Otto and Pride

M - monoids, A - submonoid, ϕ : A→ M a homomorphism
Then the corresponding Otto-Pride extension is the monoid

L = 〈M, t | at = tϕ(a), a ∈ A〉

Theorem (RDG & Steinberg)
Let M be a monoid, A a submonoid and ϕ : A→ M be a homomorphism.
Let L be the Otto-Pride extension. Suppose that M is free as a right A-set. If
M is of type left-Fn and A is of type left-Fn−1, then L is of type left-Fn.
Notes:

I Is a higher dimensional topological analogue of some results of Otto
and Pride (2004).

I Can be used to recover some of their results on homological finiteness
properties.



HNN extensions in the sense of Howie (1963)

M - monoids, A,B - submonoids isomorphic via ϕ : A→ B
C = infinite cyclic group generated by t

The HNN extension of M with base monoids A,B is defined to be

L = 〈M, t, t−1 | tt−1 = 1 = t−1t, at = tϕ(a),∀a ∈ A〉

Theorem (RDG & Steinberg)
Let L be an HNN extension of M with base monoids A,B. Suppose that,
furthermore, M is free as both a right A-set and a right B-set. If M is of type
left-Fn and A is of type left-Fn−1, then L is of type left-Fn.
Notes:

I This result recovers the usual topological finiteness result for HNN
extensions of groups.

I It also applies if M is left cancellative and A is a group.



Brown’s theory of collapsing schemes

In his 1989 paper “The geometry of rewriting systems: a proof of the
Anick–Groves–Squier Theorem”, Brown shows:

If a monoid M admits a presentation by a finite complete rewriting system
then |BM| has the homotopy type of a CW-complex with only finitely many
cells in each dimension.

I To prove this he introduces the notion of a collapsing scheme.
I This idea has its roots in earlier work of Brown and Geoghegan

(1984).
I Collapsing schemes were rediscovered again later on as Morse

matchings in Forman’s Discrete Morse theory.



Brown’s theory of collapsing schemes

Brown’s result provides a topological proof that if G is presentable by a
finite complete rewriting system then G is of type F∞.

In his paper he goes on to say:

“We would like, more generally, to construct a “small" resolution
of this type for any monoid M with a good set of normal forms, not
just for groups. I do not know any way to formally deduce such a
resolution from the existence of the homotopy equivalence for
|BM| above”.



Topological proof of Anick’s Theorem

We have developed a theory of M-equivariant collapsing schemes which can
be used to give a topological proof of

Theorem (RDG & Steinberg)
Let M be a monoid. If M admits a presentation by a finite complete rewriting
system then M is of type left-F∞.
Notes:

I We recover Anick’s theorem for monoids as a corollary.
I Our results also apply in the 2-sided case and thus we also recover a

theorem of Kobayashi (2005) on bi-FPn as a corollary.



Other topics

Other topological finiteness properties

I The left geometric dimension of M to be the minimum dimension of an
equivariant classifying space for M.

I geometric dimension is an upper bound on the cohomological
dimension cd M of M.

Projective M-sets

I We actually develop the entire theory in the more general setting of
projective M CW-complexes.

Two-sided theory

I We define the bilateral notion of a classifying space in order to
introduce a stronger property, bi-Fn. The property bi-Fn implies bi-FPn

which is of interest from the point of view of Hochschild cohomology.


