Topological finiteness properties of monoids

Robert D. Gray¹ (joint work with B. Steinberg (City College of New York))

SLADIM+ seminar Novi Sad, February 2018

¹Research supported by the EPSRC grant EP/N033353/1 "Special inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem".

The word problem for monoids and groups

Definition

A monoid M with a finite generating set A has decidable word problem if there is an algorithm which for any two words $w_1, w_2 \in A^*$ decides whether or not they represent the same element of M.

Example. $M \cong \langle a, b \mid ab = ba \rangle$ has decidable word problem.

Some history

- Markov (1947) and Post (1947): first examples of finitely presented monoids with undecidable word problem;
- ► Turing (1950): finitely presented cancellative semigroup with undecidable word problem;
- ▶ Novikov (1955) and Boone (1958): finitely presented group with undecidable word problem.

Complete rewriting systems

A - alphabet,
$$R \subseteq A^* \times A^*$$
 - rewrite rules, $\langle A \mid R \rangle$ - rewriting system Write $r = (r_{+1}, r_{-1}) \in R$ as $r_{+1} \to r_{-1}$.

Define a binary relation \rightarrow_{R} on A^* by

$$u \rightarrow_{\mathbb{R}} v \iff u \equiv w_1 r_{+1} w_2 \text{ and } v \equiv w_1 r_{-1} w_2$$

for some $(r_{+1}, r_{-1}) \in R$ and $w_1, w_2 \in A^*$.

 $\xrightarrow{*}_{R}$ is the transitive and reflexive closure of $\xrightarrow{}_{R}$

Noetherian: No infinite descending chain

$$w_1 \rightarrow_R w_2 \rightarrow_R \cdots \rightarrow_R w_n \rightarrow_R \cdots$$

Confluent: Whenever

$$u \xrightarrow{*}_{R} v$$
 and $u \xrightarrow{*}_{R} v'$

there is a word $w \in A^*$:

$$v \xrightarrow{*}_{R} w \text{ and } v' \xrightarrow{*}_{R} w$$

Definition: $\langle A \mid R \rangle$ is a finite complete rewriting system if it is complete (noetherian and confluent) and $|A| < \infty$ and $|R| < \infty$.

Complete rewriting systems

Example (Free commutative monoid)

$$\langle a, b \mid ba \rightarrow ab \rangle$$

Normal forms (irreducibles) = $\{a^i b^j : i, j \ge 0\}$

Example (Free group)

$$\langle a, a^{-1}, b, b^{-1} \mid aa^{-1} \to 1, \ a^{-1}a \to 1, \ bb^{-1} \to 1, \ b^{-1}b \to 1 \rangle.$$

Normal forms (irreducibles) = $\{ \text{ freely reduced words } \}$.

Important basic fact

If a monoid M admits a presentation by a finite complete rewriting system, then M has decidable word problem.

The homological finiteness property FP_n

 $\mathbb{Z}M$ - integral monoid ring, e.g. $4m_1 - 2m_2 + 3m_3 \in \mathbb{Z}M$

Definition

A monoid is of type left-FP_n if \mathbb{Z} has a free resolution as a trivial left $\mathbb{Z}M$ -module that is finite through dimension n. i.e. there is a sequence:

$$F_n \xrightarrow{\partial_n} F_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} \mathbb{Z} \to 0$$

such that for all i we have:

▶ F_i is a finitely generated free left $\mathbb{Z}M$ -module i.e.

$$F_i \cong \mathbb{Z}M \oplus \mathbb{Z}M \oplus \cdots \oplus \mathbb{Z}M$$

- \triangleright ∂_i is a homomorphism, and the sequence is exact, i.e.
 - $\operatorname{im}(\partial_i) = \ker(\partial_{i-1})$ and $\operatorname{im}(\partial_0) = \mathbb{Z}$.

The homological finiteness property FP_n

 $\mathbb{Z}M$ - integral monoid ring, e.g. $4m_1 - 2m_2 + 3m_3 \in \mathbb{Z}M$

Definition

A monoid is of type left-FP_n if \mathbb{Z} has a free resolution as a trivial left $\mathbb{Z}M$ -module that is finite through dimension n. i.e. there is a sequence:

$$F_n \xrightarrow{\partial_n} F_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} \mathbb{Z} \to 0$$

such that for all i we have:

 $ightharpoonup F_i$ is a finitely generated free left $\mathbb{Z}M$ -module i.e.

$$F_i \cong \mathbb{Z}M \oplus \mathbb{Z}M \oplus \cdots \oplus \mathbb{Z}M$$

- \triangleright ∂_i is a homomorphism, and the sequence is exact, i.e.
 - $ightharpoonup \operatorname{im}(\partial_i) = \ker(\partial_{i-1})$ and $\operatorname{im}(\partial_0) = \mathbb{Z}$.

For any monoid:

- ▶ finitely generated \Rightarrow left-FP₁, finitely presented \Rightarrow left-FP₂
- ▶ Anick (1986): If a monoid M is presented by a finite complete rewriting system then M is of type left-FP $_{\infty}$.

One-relation monoids

Longstanding open problem

Is the word problem decidable for one-relation monoids $\langle A \mid u = v \rangle$?

Related open problem

Does every one-relation monoid $\langle A \mid u = v \rangle$ admit a presentation by a finite complete rewriting system?

If yes then every one-relation monoid would be of type left-FP $_{\infty}$ so we ask:

Question: Is every one-relator monoid $\langle A \mid u = v \rangle$ of type left-FP_{\infty}?

Magnus (1932): Proved that one-relator groups have decidable word problem.

Cohen–Lyndon (1963): Shows that every one-relator group is of type FP_{∞} .

The topological finiteness property F_n

Definition (C. T. C. Wall (1965))

A K(G,1)-complex is a CW complex with fundamental group G and all other homotopy groups trivial (i.e. the space is aspherical). A group G is of type F_n $(0 \le n < \infty)$ if there is a K(G,1)-complex with finite n-skeleton

For any group:

- (i) $F_1 \equiv$ finitely generated, $F_2 \equiv$ finite presented.
- (ii) $F_n \Rightarrow FP_n$
- (iii) For finitely presented groups $F_n \equiv FP_n$.

Aim

Develop a theory of topological finiteness properties of monoids. A good definition of F_n for monoids should satisfy (ii), so that it can be used to study FP_n .

Cell complexes

...spaces that can be decomposed nicely into a disjoint union of cells

- $I = [0, 1] \subseteq \mathbb{R}$ unit interval
- ► S^n unit sphere in \mathbb{R}^{n+1} = all points at distance 1 from the origin.
- ▶ B^n closed unit ball in \mathbb{R}^n = all points of distance ≤ 1 from the origin.
- ▶ $\partial B^n = S^{n-1}$ = the boundary of the *n* ball.
- e^n an *n*-cell, homeomorphic to the open n ball $B^n \partial B^n$.

Attaching an *n*-cell

CW complex definition

Definition

A CW decomposition of a topological space *X* is a sequence of subspaces

$$X_0 \subseteq X_1 \subseteq X_2 \subseteq \dots$$

such that

- \blacktriangleright X_0 is discrete set, whose points are regarded as 0 cells
- ► The *n*-skeleton X_n is obtained from X_{n-1} by attaching a (possibly) infinite number of *n*-cells e_{α}^n via maps $\varphi_{\alpha}: S^{n-1} \to X_{n-1}$.
- ▶ We have $X = \bigcup X_n$ with the *weak* topology (this means that a set $U \subseteq X$ is open if and only if $U \cap X_n$ is open in X_n for each n).

A $\mathbb{C}\mathbb{W}$ complex² is a space X equipped with a $\mathbb{C}\mathbb{W}$ decomposition.

²C stands for 'closure-finite', and the W for 'weak topology'.

K(G, 1) of a group and property F_n

Definition

A K(G, 1)-complex is a CW complex with fundamental group G and all other homotopy groups trivial (i.e. the space is aspherical).

Existence: Every group G admits a K(G, 1)-complex Y.

Uniqueness: If X and Y are CW complexes both of which are K(G, 1)-complexes then X and Y are homotopy equivalent (**Hurewicz**, 1936).

The classifying space |BM|

Associated with any monoid M is a combinatorial object BM called a simplicial set.

BM has *n*-simplices: $\sigma = (m_1, m_2, ..., m_n)$ - *n*-tuples of elements of M. There are face maps given by

$$d_{i}\sigma = \begin{cases} (m_{2}, \dots, m_{n}) & i = 0\\ (m_{1}, \dots, m_{i-1}, m_{i}m_{i+1}, m_{i+2}, \dots, m_{n}) & 0 < i < n\\ (m_{1}, \dots, m_{n-1}) & i = n, \end{cases}$$

and degeneracy maps are given by

$$s_i \sigma = (m_1, \ldots, m_i, 1, m_{i+1}, \ldots, m_n) \quad (0 \le i \le n).$$

The geometric realisation |BM| is a CW complex build from the above data which has one n-cell for every non-degenerate n-simplex of BM i.e. for every n-tuple all of whose entries are different from 1.

First attempt: F_n for monoids via |BM|

Fact: If G is a group then |BG| is a K(G, 1)-complex.

Since K(G, 1) is unique up to homotopy equivalence we have:

G is of type $F_n \Leftrightarrow |BG|$ is homotopy equivalent to a CW-complex with finite *n*-skeleton.

First attempt: F_n for monoids via |BM|

Fact: If G is a group then |BG| is a K(G, 1)-complex.

Since K(G, 1) is unique up to homotopy equivalence we have:

G is of type $F_n \Leftrightarrow |BG|$ is homotopy equivalent to a CW-complex with finite *n*-skeleton.

Definition (first attempt)

M is of type $F_n \Leftrightarrow |BM|$ is homotopy equivalent to a CW-complex with finite n-skeleton.

First attempt: F_n for monoids via |BM|

Fact: If G is a group then |BG| is a K(G, 1)-complex.

Since K(G, 1) is unique up to homotopy equivalence we have:

G is of type $F_n \Leftrightarrow |BG|$ is homotopy equivalent to a CW-complex with finite *n*-skeleton.

Definition (first attempt)

M is of type $F_n \Leftrightarrow |BM|$ is homotopy equivalent to a CW-complex with finite n-skeleton.

McDuff (1979) showed that if M has a left or right zero then |BM| is contractible (i.e. is homotopy equivalent to a one-point space). On the other hand, it is known that an infinite left zero semigroup with identity adjoined does not satisfy the property left-FP₁.

Conclusion

If we define F_n for monoids via |BM| then $F_n \not\Rightarrow \text{left-FP}_n$.

M-equivariant classifying space $|\overrightarrow{EM}|$

Associated with any monoid M is another simplicial set \overrightarrow{EM} .

The *n*-simplies of \overrightarrow{EM} are written as $m(m_1, m_2, ..., m_n) = m\tau$ where $\tau = (m_1, m_2, ..., m_n)$ is an *n*-simplex of *BM*.

The face maps in \overrightarrow{EM} are given by

$$d_i(m(m_1, m_2, ..., m_n)) = \begin{cases} mm_1(m_2, ..., m_n) & i = 0 \\ m(m_1, m_2, ..., m_i m_{i+1}, ..., m_n) & 0 < i < n \\ m(m_1, m_2, ..., m_{n-1}) & i = n \end{cases}$$

and the degeneracy maps are given by

$$s_i\sigma=m(m_1,\ldots,m_i,1,m_{i+1},\ldots,m_n)\quad (0\leq i\leq n).$$

where $\sigma = m(m_1, ..., m_n)$.

The geometric realisation $|\overrightarrow{EM}|$ is a CW complex with one *n*-cell for every non-degenerate *n*-simplex of \overrightarrow{EM} .

M-equivariant classifying space $|\overrightarrow{EM}|$

M acts on \overrightarrow{EM} via left multiplication.

$$n \cdot m(m_1, m_2, ..., m_n) = nm(m_1, m_2, ..., m_n).$$

 \overrightarrow{EM} is a free left M-set with basis BM

i.e. each element of \overrightarrow{EM} can be written uniquely in the form $m\tau$ for τ in BM.

This action sends (non-degenerate) *n*-simplices to (non-degenerate) *n*-simplices, and thus induces an action of M on $|\overrightarrow{EM}|$.

Conclusion

The monoid M acts by left multiplication on the CW complex $|\overrightarrow{EM}|$. This action is free, and sends n-cells to n-cells.

Free *M*-CW complex

A left *M*-space is a topological space *X* with a continuous left action $M \times X \to X$ where *M* has the discrete topology.

Definition (free *M*-CW-complex)

A free *M*-cell of dimension *n* is an *M*-space of the form $M \times B^n$ where B^n has the trivial action.

A free *M*-CW complex is built up by attaching *M*-cells $M \times B^n$ via *M*-equivariant maps from $M \times S^{n-1}$ to the (n-1)-skeleton.

 X_n is obtained from X_{n-1} as a pushout of M-spaces, with M-equivariant maps, where P_n is a free left M-set.

$$P_{n} \times S^{n-1} \longrightarrow X_{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$P_{n} \times B^{n} \longrightarrow X_{n}$$

Attaching an orbit of cells

Equivariant classifying spaces

Definition

We say that a free M-CW complex X is a left equivariant classifying space for M if it is contractible.

Existence: Every monoid has a left equivariant classifying space. Indeed, it may be shown that $|\overrightarrow{EM}|$ is an example.

Uniqueness: Let *X*, *Y* be equivariant classifying spaces for *M*. Then *X* and *Y* are *M*-homotopy equivalent.

Definition (Property F_n for monoids)

A monoid M is of type left- F_n if there is an equivariant classifying space X for M such that the set of k-cells is a finitely generated free left M-set for all $k \le n$.

Relationship with FP_n

Proposition (RDG & Steinberg)

Let *M* be a monoid.

- 1. A group is of type left- F_n if and only if it is of type F_n in the usual sense.
- 2. If *M* is of type left- F_n , then³ it is of type left- FP_n .
- 3. For finitely presented monoids left- $F_n \equiv \text{left-FP}_n$.

³The augmented cellular chain complex of an equivariant classifying space for M provides a free resolution of the trivial (left) $\mathbb{Z}M$ -module \mathbb{Z} .

Finite generation and presentability

Let M be a monoid and let $A \subseteq M$. The (right) Cayley graph $\Gamma(M,A)$ has Vertices: M Directed edges: $x \xrightarrow{a} y$ iff y = xa where $x, y \in M$, $a \in A$.

Theorem (RDG & Steinberg)

Let *M* be a monoid. The following are equivalent.

- 1. M is of type left- F_1 .
- 2. M is of type left- FP_1 .
- 3. There is a finite subset $A \subseteq M$ such that $\Gamma(M, A)$ is connected as an undirected graph.

In particular, any finitely generated monoid is of type left- F_1 .

Theorem (RDG & Steinberg)

Let M be a finitely presented monoid. Then M is of type left- F_2 .

Cayley graphs of semigroups and monoids

The bicyclic monoid $B = \langle b, c \mid bc = 1 \rangle$

Free monoids are left- F_{∞}

Free monoid M = {a, b}. Coursey graph M(M, {a,b3)

Bicyclic monoid B= <b, c | be=1>

One-relation monoids

Question: Is every one-relation monoid $\langle A \mid u = v \rangle$ of type FP_{∞} ?

Theorem (RDG & Steinberg)

Let $M = \langle A \mid w_1 = 1, w_2 = 1, \dots, w_k = 1 \rangle$ and let G be the group of units of M. If G is left- F_{∞} then M is left- F_{∞} .

Corollary (RDG & Steinberg)

Every one-relator monoid $M = \langle A \mid w = 1 \rangle$ is of type left- F_{∞} .

Note: It is still an open whether one-relation monoids $\langle A \mid u = v \rangle$ in general are left- F_{∞} .

$M = \langle A \mid \omega_i = 1, \dots, \omega_k = 1 \rangle$

Free products with amalgamation

A monoid amalgam is a triple $[M_1, M_2; W]$ where M_1, M_2 are monoids with a common submonoid W. The amalgamated free product is the pushout

Theorem (RDG & Steinberg)

Let $[M_1, M_2; W]$ be an amalgam of monoids such that M_1, M_2 are free as right W-sets. If M_1, M_2 are of type left- F_n and W is of type left- F_{n-1} , then $M_1 *_W M_2$ is of type left- F_n .

- ▶ The hypotheses this theorem hold if W is trivial or if M_1, M_2 are left cancellative and W is a group.
- ► Improves on results of **Cremanns and Otto (1998)**.

HNN-like extensions after Otto and Pride

M - monoids, A - submonoid, $\varphi\colon A\to M$ a homomorphism Then the corresponding Otto-Pride extension is the monoid

$$L = \langle M, t \mid at = t\varphi(a), a \in A \rangle$$

Theorem (RDG & Steinberg)

Let M be a monoid, A a submonoid and $\varphi: A \to M$ be a homomorphism. Let L be the Otto-Pride extension. Suppose that M is free as a right A-set. If M is of type left- F_n and A is of type left- F_{n-1} , then L is of type left- F_n .

- ► Is a higher dimensional topological analogue of some results of Otto and Pride (2004).
- Can be used to recover some of their results on homological finiteness properties.

HNN extensions in the sense of Howie (1963)

M - monoids, A, B - submonoids isomorphic via $\varphi \colon A \to B$ C = infinite cyclic group generated by t

The HNN extension of M with base monoids A, B is defined to be

$$L = \langle M, t, t^{-1} \mid tt^{-1} = 1 = t^{-1}t, at = t\varphi(a), \forall a \in A \rangle$$

Theorem (RDG & Steinberg)

Let L be an HNN extension of M with base monoids A, B. Suppose that, furthermore, M is free as both a right A-set and a right B-set. If M is of type left- F_n and A is of type left- F_{n-1} , then L is of type left- F_n .

- ► This result recovers the usual topological finiteness result for HNN extensions of groups.
- ightharpoonup It also applies if M is left cancellative and A is a group.

Brown's theory of collapsing schemes

In his 1989 paper "The geometry of rewriting systems: a proof of the Anick–Groves–Squier Theorem", Brown shows:

If a monoid M admits a presentation by a finite complete rewriting system then |BM| has the homotopy type of a CW-complex with only finitely many cells in each dimension.

- ► To prove this he introduces the notion of a collapsing scheme.
- ► This idea has its roots in earlier work of **Brown and Geoghegan** (1984).
- Collapsing schemes were rediscovered again later on as Morse matchings in Forman's Discrete Morse theory.

Brown's theory of collapsing schemes

Brown's result provides a topological proof that if G is presentable by a finite complete rewriting system then G is of type F_{∞} .

In his paper he goes on to say:

"We would like, more generally, to construct a "small" resolution of this type for any monoid M with a good set of normal forms, not just for groups. I do not know any way to formally deduce such a resolution from the existence of the homotopy equivalence for |BM| above".

Topological proof of Anick's Theorem

We have developed a theory of *M*-equivariant collapsing schemes which can be used to give a topological proof of

Theorem (RDG & Steinberg)

Let M be a monoid. If M admits a presentation by a finite complete rewriting system then M is of type left- F_{∞} .

- ▶ We recover Anick's theorem for monoids as a corollary.
- Our results also apply in the 2-sided case and thus we also recover a theorem of Kobayashi (2005) on bi-FP_n as a corollary.

Other topics

Other topological finiteness properties

- ▶ The left geometric dimension of M to be the minimum dimension of an equivariant classifying space for M.
- geometric dimension is an upper bound on the cohomological dimension cd M of M.

Projective M-sets

▶ We actually develop the entire theory in the more general setting of projective *M* CW-complexes.

Two-sided theory

▶ We define the bilateral notion of a classifying space in order to introduce a stronger property, bi- F_n . The property bi- F_n implies bi- FP_n which is of interest from the point of view of Hochschild cohomology.