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University of New Brunswick, Fredericton, Canada

Keywords:

Brouwer, Weyl, continuum, Laguerre geometry, deSitter space, causal curves

Since at least the 1980s there has been growing interest in the hypothesis
that conepts of computability are (or should be) dependent on physics. In
the first part of this talk I review some of the fascinating arguments that
appear to be at odds with one another more often than one would like.

The guiding idea is that theoretical computational devices like Turing
machines ought to be viewed as realized (or realizable) in a particular phys-
ical setting. E.g., Turing machines seem to conceptually “live” in the world
of classical mechanics. What is meant by “physical setting”, however, is
in fact a mathematical model of the physical world. Hence it seems more
accurate to say that in works on a “physical Church-Turing Thesis”, com-
putability is considered in the framework of a theory within mathematical
physics: classical mechanics, general relativity, or quantum theory, as the
case may be.

Although literature on quantum computing features periodic announce-
ments of purported violations of the Church-Turing Thesis, perhaps the most
radical expression of the thesis that computability is dependent on physics
comes from general relativity. In the somewhat exotic Malament-Hogarth
spacetimes a Turing machine can travel along a trajectory that has infinite
proper time and, it is argued, can send a signal to an observer in whose
frame the machine’s trajectory has finite time. The observer would thus
have at their disposal an infinite-time Turing machine. Therefore, Hogarth
argues [3], “the Church-Turing Thesis is like the outmoded claim: ‘Euclidean
geometry is the true geometry.’ ”

The arguments mentioned above proceed in the broader mathematical
context of classical analysis, as does most of mathematical physics. In par-
ticular, the spacetime continuum is a manifold consisting of points with
coordinates in R. In the second part of the talk I would like to add to
the overall confusion by showing how the Brouwer-Weyl continuum, or an
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analogous concept in several dimensions, itself relates to a spacetime famil-
iar from mathematical physics — deSitter spacetime — as well as to order
structures introduced in Dana Scott’s work on the theory of computation.

According to Brouwer (and, for a time, Weyl), the continuum should be
regarded as the collection of ‘sequences of nested intervals whose measure
converges to zero.’ [5]. A higher-dimensional analog would be nested se-
quences of spheres with radii converging to zero. Classical geometry, going
back to Laguerre and Lie, encodes the space of oriented spheres in Rn as
points in Rn+1: (x, r) with x ∈ Rn being the centre and r ∈ R the oriented
radius [1]. In this cyclographic representation the space of spheres has the
structure of Minkowski space R1,n with the usual pseudometric.

In this representation, for r1, r2 > 0, ||x1 − x2|| ≤ r1 − r2 iff the sphere
(x2, r2) is contained in the sphere (x1, r1) [2]. In the terminology of special
relativity, sphere inclusion corresponds to events that are related in the
causal order. The concept of a nested sequence of spheres thus corresponds
to a time-oriented causal sequence of events in Minkowski space.

Restricting to positive radii does not correspond to the full Minkowski
space. To deal with this, we consider a different representation, in terms of
Lie cycles. For a sphere (x, r), with r > 0, consider the vector (y0, . . . , yn+1) ∈
R1,n+2 given by
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k = 1, and inducing the metric on this hyperboloid from

R1,n+2 one gets the deSitter metric on the space of spheres

ds2 =
1

r2
(−dr2 + dx2).

Substitution r = e∓t yields the deSitter metric ds2 = −dt2 + e±2tdx2 in flat
slicing coordinates of the “expanding” (resp. “contracting”) part.

Thus, surprisingly, a detour through classical geometries relates the
“higher-dimensional continuum” to a well known object in general relativity.
Nested sequences of spheres correspond to “time”-oriented causal sequences.
Such sequences, without additional qualifications, could be finite; this is not
what Brouwer and Weyl had in mind. A more precise analog would be inex-
tendible “time”-oriented causal sequences (by analogy of inextendible causal
curves): there is no sphere that is contained in all spheres in the nested
sequence.

These meditations suffer from a fatal flaw: they invoke the classical anal-
ysis that underpins the definition of deSitter space or Lorenzian manifolds
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in general. Although theorems in general relativity show that the mani-
fold topology (under some assumptions) can be recovered from the space
of timelike curves, this requires a notion of smoothness. It may be possi-
ble to formulate these ideas in a way that does not presuppose a concept
of smoothness. Notably, Martin and Panangaden [4] introduce the cate-
gory of globally hyperbolic posets, which includes causal orders on globally
hyperbolic spacetimes such as deSitter. This category is equivalent to the
category of interval domains, introduced by Scott in his pioneering work on
the theory of computation and semantics of programming languages.

The upshot of the argument in [4] is that manifold topology (if not geom-
etry) of a globally hyperbolic spacetime can be recovered from a countable
dense subset of the associated interval domain of the causal order. The
spacetime itself (if we start from one) is homeomorphic to the set of max-
imal elements in the interval domain, with Scott topology. If no manifold
is given from the start, but only a countable dense poset — e.g., spheres
with rational centres and rational radii — one can take an ideal completion
of the basis of intervals in the poset. The set of maximal elements of the
completion, with Scott topology, is the “manifold”, topologically; but there
is no metric. (This is the fundamental problem of the causal set program.)

Despite interesting and surprising (at least to me) connections with dif-
ferent fields of mathematics, it is not clear whether such an operation, even
if successful, would lead to a satisfactory model of the intuitionist continuum
in higher dimensions. Automorphisms of the causal order of the Minkowski
space R1,n for n > 1 are precisely the Lorenz transformations, by a famous
theorem of Alexandrov and Zeeman. In this sense, the structure of the con-
tinuum as a set of nested sequences of intervals (which would correspond
to n = 1) seems to be fundamentally different from a higher-dimensional
analog: the Alexandrov-Zeeman theorem does not hold for n = 1, as there
are nonlinear bijections R → R that preserve interval order.
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