Seminar za Logiku, Algebru, DIskretnu Matematiku i teorijsko računarstvo
Logic, Algebra, DIscrete Mathematics and Theoretical Computer Science Seminars

Letnji semestar 2018. / Spring semester 2018

06/06/2018 (12:00)
Bojan Bašić
(PMF Novi Sad): Bu
šenje kvadrata

Razmatramo sledeći problem: potrebno je odrediti najmanji broj tačaka koje se mogu izabrati u datom n × n kvadratu ABCD na takav način da ne preostane nijedan jedinični kvadrat u kvadratu ABCD koji u svojoj unutrašnjosti ne sadrži nijednu od uočenih tačaka. Drugim rečima, zanima nas kako najefikasnije "uništiti" objekat oblika kvadrata stranice n, gde se "uništavanje" sprovodi bušenjem što manjeg broja malih rupa, a kvadrat se smatra "uništenim" ako se ne može spasti nijedno kvadratno parče stranice 1.

Ovaj problem zapravo pripada klasi problema koncentrisanih oko tzv. pirsing broja: zaista, ako sa Un označimo kolekciju svih otvorenih jediničnih kvadrata koji se mogu smestiti unutar datog kvadrata n × n, vrednost koju tražimo predstavlja upravo pirsing broj kolekcije Un, u oznaci π(Un). Pokazaćemo π(Un) = n2 za n ⩽ 7, i daćemo gornju granicu za π(Un) asimptotski jednaku (2/√3)n2, za šta verujemo da je asimptotski tačno. Nakon toga uopštavamo korišćene tehnike kako bismo dobili slično gornje ograničenje u slučaju kada je ABCD pravougaonik, kao i gornje ograničenje za π(Ux) kada x nije nužno prirodan broj.

Konačno, pokazaćemo da se dobijeni rezultati mogu primeniti na problem pakovanja zadatog broja jediničnih kvadrata u što manji kvadrat; ispostavlja se da dobijeni rezultati predstavljaju generalan "okvir" unutar kog smo uspeli ponovo dokazati mnoga tvrđenja u vezi s pomenutim problemom (originalno dobijena nezavisno jedno od drugog), kao i pokazati nov rezultat u vezi s pakovanjem 61 kvadrata.

Ovo je zajednički rad sa Annom Slivkovom.

23/05/2018
Dragan Mašulović
(PMF Novi Sad): Categorical Ramsey theory

Generalizing the classical results of F.P.Ramsey from the late 1920's, the structural Ramsey theory originated at the beginning of 1970s. We say that a class K of fiite structures has the Ramsey property if the following holds: for any number k≥2 of colors and all A,BK such that A embeds into B there is a CK such that no matter how we color the copies of A in C with k colors, there is a monochromatic copy B' of B in C (that is, all the copies of A that fall within B'  are colored by the same color).

Showing that the Ramsey property holds for a class of finite structures K can be an extremely challenging task and a slew of sophisticated methods have been proposed in literature. These methods are usually constructive: given A,BK and k≥ 2 they prove the Ramsey property directly by constructing a structure CK with the desired properties.

It was Leeb who pointed out already in early 1970's that the use of category theory can be quite helpful both in the formulation and in the proofs of results pertaining to structural Ramsey theory. Instead of pursuing the original approach by Leeb (which has very fruitfully been applied to a wide range of Ramsey problems) we proposed in the last few years a set of new strategies to show that a class of structures has the Ramsey property. In this talk we explicitly put the Ramsey property and the dual Ramsey property in the context of categories of finite structures. We use elementary category theory to provide new Ramsey statements about classes of finite relational structures and algebras.

16/05/2018
Des FitzGerald
(University of Tasmania, Hobart, Australia): Representing inverse semigroups in complete inverse algebras

The Wagner-Preston theorem says that any inverse semigroup may be embedded in the so-called symmetric inverse semigroup consisting of all injective partial maps between subsets of some set X . This is a very good representation theorem: it illuminates, for example, all the order properties important in the study of inverse semigroups. On the other hand, the embedding of the proof is neither unique nor necessarily optimal. So it is desirable to be able to describe and classify all representations of inverse semigroups in a symmetric one. A theorem of Schein does exactly that, and works of Munn and Ponizovskii do likewise for linear (or matrix) representations of inverse semigroups.

Beyond the symmetric inverse semigroups, there are many concrete inverse semigroups (made up of partial automorphisms of various structures, for example) which may serve as useful models of inverse semigroups. Yet our means of constructing good representations of this nature is embarrassingly limited: we are mostly reliant on Cayley's theorem in semigroup theory, and its modifications, to make representations by injective partial maps, matrices and the like. (This may be contrasted with the situation in group theory, where notable groups have been described as automorphism groups of geometries, graphs, spaces, etc.)

This talk will illustrate some of these remarks, and set out a partial description and classification of representations of arbitrary inverse semigroups in members of a fairly broad class of (what can be thought of as) partial automorphism monoids. (Thus it may be seen as a generalisation of Schein's approach.) We have to consider the meaning of transitivity and effectiveness in this more general setting, and we pay some particular attention to the Boolean inverse monoids and the dual symmetric inverse monoids as receivers for representations.

[ slides (pdf) ]

09/05/2018
Boriša Kuzeljević
(Czech Academy of Sciences, Prague, Czech Rep.): P-ideal dihotomija i neke verzije Suslinove hipoteze (P-ideal dichotomy and some versions of Suslin's Conjecture)

P-ideal dihotomija je kombinatorni princip koji sledi iz Proper forsing aksiome. Neke važnije posledice P-ideal dihotomije su Suslinova hipoteza, Hipoteza o singularnim kardinalima i Projektivna determinisanost. Poznato je da Proper forsing aksioma implicira da se svako Aronszajnovo drvo može utopiti u racionalnu liniju, što je vrlo jaka forma Suslinove hipoteze. Na predavanju ćemo ispitati odnos P-ideal dihotomije i ove verzije Suslinove hipoteze.

Ovo je zajednički rad sa Stevom Todorčevićem.

25/04/2018 (12:00)
Marijana Lazić
(TU Wien, Austria): Synthesis of distributed algorithms with parameterized threshold guards

In threshold-based distributed algorithms, a process has to wait until the number of messages it receives reaches a certain threshold, in order to perform an action. I will present an automated method for synthesizing these thresholds, given a sketch of a distributed algorithm and specifications. In this way we synthesize distributed algorithms that are correct for every number n of processes and every number t of faults, provided some resilience condition holds, e.g. n>3t

This is joint work with Igor Konnov, Josef Widder and Roderick Bloem.

Josef Widder (TU Wien, Austria): Communication-closed layers as paradigm for distributed systems

Distributed computations are characterized by a partial order over events: two concurrent events at different processes may be re-ordered without changing the outcome of the computation. For systems that are composed of so-called communication-closed layers, this partial-order argument has been used to reduce the reasoning about distributed systems to a specific sequential form. I will discuss existing techniques for communication-closed layers, and applications to automated verification of state-of-the-art distributed systems.

This is joint work with Marijana Lazić and Cezara Drăgoi.

11/04/2018
Vlado Uljarević
(PMF Novi Sad): Kolaps hijerarhije ograničene širine (The collapse of the bounded width hierarchy)

U izlaganju ćemo prezentovati rezultate iz rada: L. Barto, The collapse of the bounded width hierarchy. Instanca Problema zadovoljenja uslova (kraće CSP, od eng. Constraint Satisfaction Problem) se sastoji od promenljivih i uslova, gdje je svaki od uslova skup dozvoljenih evaluacija za neke od promenljivih. Jedan od načina kako da definišemo neku CSP podklasu je da ograničimo relacije uslova na tzv. jezik uslova, tj. fiksiran skup relacija na konačnom skupu. Definišemo relacijsku širinu za jezik uslova preko (k,l)-minimalne instance, a oni jezici uslova sa ograničenom relacijskom širinom se mogu urediti u odnosu na najmanju relacijsku širinu koju imaju. Međutim, ispostavlja se da, na osnovu glavne teoreme pomenutog rada i par ranijih rezultata, ova hijerarhija značajno kolapsira. Za kraj ćemo navesti i neke primene koje je glavna teorema našla u univerzalnoj algebri.

28/03/2018
Anna Slivková
(
PMF Novi Sad): Od parcijalnih operatora zatvaranja, preko parcijalnih matroida, do geometrijskih i polumodularnih poseta (From partial closure operators, via patrial matroids, to geometric and semimodular posets)

U izlaganju uopštavamo dobro poznate veze između operatora zatvaranja, sistema zatvaranja i potpunih mreža. Uvodimo posebnu vrstu parcijalnog operatora zatvaranja, koji nazivamo oštar parcijalni operator zatvaranja, i pritom svaki oštar parcijalni operator zatvaranja jedinstveno korespondira parcijalnom sistemu zatvaranja. Dalje uvodimo posebnu vrstu parcijalnog sistema zatvaranja, nazvan glavni parcijalni sistem zatvaranja, a zatim navodimo teoremu reprezentacije za posete u odnosu na uvedene parcijalne operatore zatvaranja i parcijalne sisteme zatvaranja. Dalje, s obzirom na dobro poznatu vezu između matroida i geometrijskih mreža, a budući da se pojam matroida može na prirodan način uopštiti na parcijalne matroide (definišući ih preko parcijalnih operatora zatvaranja umesto preko operatora zatvaranja), definišemo geometrijske uređene skupove i pokazujemo da su povezani sa parcijalnim matroidima na isti način kao što su povezani i matroidi i geometrijske mreže. Osim toga, definišemo polumodularne uređene skupove, koji su uopštenje polumodularnih mreža, i takođe postoji ista veza između polumodularnih i geometrijskih poseta kao što imamo između polumodularnih i geometrijskih mreža.

Ovo je zajednički rad sa B. Šešeljom i A. Tepavčević.

[ slides (pdf) ]

14/03/2018
Miloš Trujić
(ETH Zürich, Switzerland):
Resilience of random graphs

A typical question in extremal graph theory concerns finding sufficient conditions for a certain property to hold. In the recent years a lot of focus has been directed into questions regarding whether a random graph satisfies a certain property. An even more recent trend, initiated by Sudakov and Vu in 2008, is to study how robust such properties are. For instance, local resilience measures how many edges incident to every vertex an adversary is allowed to remove arbitrarily in order to destroy the property. In this talk we report on some of the developments in the field. In particular, we generalise the notion of local resilience and demonstrate its usefulness on an example of the square of a Hamilton cycle in random graphs.

Joint work with Manuela Fischer, Nemanja Škorić, and Angelika Steger.

27/02/2018 (utorak / Tuesday)
Umesto redovnog sastanka seminara, srdačno pozivamo sve kolege na predavanje Kita Devlina (Amf. I, 11:00).
Instead of the regular meeting, we cordially invite all the colleagues to the lecture of Keith Devlin (Amph. I, 11:00).

14/02/2018
Ivana Đurđev
(PMF Novi Sad/MI SANU Beograd): Klase složenosti P i NP (Complexity classes P and NP)

P vs NP je jedan od najpoznatijih Milenijumskih problema Klejevog instituta. Intuitivno, P je klasa problema koji se mogu "brzo" rešiti, a NP klasa problema za koje možemo "brzo" proveriti da li je neka ponuđena vrednost jedno od rešenja. Pitanje (doslovno) vredno milion dolara je: da li su klase P i NP iste?

U izlaganju nam je cilj da, krenuvši od definicije Tjuringove mašine, uvedemo pojmove rešivosti problema i efikasnosti (brzine) rešavanja, da bismo potom precizno definisali klase složenosti P i NP. Uz primere problema iz tih klasa, navodimo i neke njihove osobine, uvodimo pojmove NP-težine i NP-kompletnosti i pomoću njih opisujemo informacije koje su nam poznate o odnosu klasa P i NP. Osim toga, dajemo Cook-Levinovu teoremu uz detaljno objašnjenje ideje dokaza i uvodimo jos neke klase složenosti, bliske klasama P i NP. Za kraj dajemo istorijski pregled prikazanih rezultata.

01/02/2018 (četvrtak / Thursday)
Robert D. Gray
(University of East Anglia, Norwich, UK): Topological finiteness properties of monoids

Two fundamental finiteness properties in group theory are those of being finitely generated and of being finitely presented. These two properties were generalised to higher dimensions by C. T. C. Wall in 1965. A group G is said to be of type Fn if it has an Eilenberg-MacLane complex K(G,1) with finite n-skeleton. (Here K(G,1) is a certain nice topological space with fundamental group G.) It may be shown that a group is finitely generated if and only if it is of type F1 and is finitely presented if and only if it is of type F2. Related to this is a certain homological finiteness property called FPn. This property is defined for a monoid S in terms of the existence of certain resolutions of free left ZS-modules. The property FPn was introduced for groups by Bieri in 1976. In monoid and semigroup theory the property FPn arises naturally in the study of string rewriting systems. The connection between complete rewriting systems and homological finiteness properties is given by a result of Anick (1986) which shows that a monoid that admits such a presentation must be of type FPn for all n. The properties Fn and FPn are closely related. In particular, for finitely presented groups they are equivalent.

Because of the connection with rewriting systems, the finiteness property FPn for monoids has received a great deal of attention in the literature. It is sometimes easier to establish the topological finiteness properties Fn for a group than the homological finiteness properties FPn, especially if there is a suitable geometry / topological space on which the group acts in a nice way. Currently no theory of Fn exists for monoids. In this talk I will describe some recent joint work with Benjamin Steinberg (City College of New York) which was motivated by the question of developing a useful notion of Fn for monoids. This led us to develop a theory of monoids acting on CW complexes. I will explain the ideas we have developed and some of their applications.

[ slides (pdf) ]